Publications by Year: 2019

2019

Tobisch A, Schultz T, Stirnberg R, Varela-Mattatall G, Knutsson H, azaval PI, Stöcker T. Comparison of basis functions and q-space sampling schemes for robust compressed sensing reconstruction accelerating diffusion spectrum imaging. NMR Biomed. 2019;32(3):e4055. doi:10.1002/nbm.4055
Time constraints placed on magnetic resonance imaging often restrict the application of advanced diffusion MRI (dMRI) protocols in clinical practice and in high throughput research studies. Therefore, acquisition strategies for accelerated dMRI have been investigated to allow for the collection of versatile and high quality imaging data, even if stringent scan time limits are imposed. Diffusion spectrum imaging (DSI), an advanced acquisition strategy that allows for a high resolution of intra-voxel microstructure, can be sufficiently accelerated by means of compressed sensing (CS) theory. CS theory describes a framework for the efficient collection of fewer samples of a data set than conventionally required followed by robust reconstruction to recover the full data set from sparse measurements. For an accurate recovery of DSI data, a suitable acquisition scheme for sparse q-space sampling and the sensing and sparsifying bases for CS reconstruction need to be selected. In this work we explore three different types of q-space undersampling schemes and two frameworks for CS reconstruction based on either Fourier or SHORE basis functions. After CS recovery, diffusion and microstructural parameters and orientational information are estimated from the reconstructed data by means of state-of-the-art processing techniques for dMRI analysis. By means of simulation, diffusion phantom and in vivo DSI data, an isotropic distribution of q-space samples was found to be optimal for sparse DSI. The CS reconstruction results indicate superior performance of Fourier-based CS-DSI compared to the SHORE-based approach. Based on these findings we outline an experimental design for accelerated DSI and robust CS reconstruction of the sparse measurements that is suitable for the application within time-limited studies.
en MN, Schremm A, Nilsson M, Horne M, Roll M. Cortical thickness of Broca’s area and right homologue is related to grammar learning aptitude and pitch discrimination proficiency. Brain Lang. 2019;188:42–47. doi:10.1016/j.bandl.2018.12.002
Aptitude for and proficiency in acquiring new languages varies in the human population but their neural bases are largely unknown. We investigated the influence of cortical thickness on language learning predictors measured by the LLAMA tests and a pitch-change discrimination test. The LLAMA tests are first language-independent assessments of language learning aptitude for vocabulary, phonetic working memory, sound-symbol correspondence (not used in this study), and grammatical inferencing. Pitch perception proficiency is known to predict aptitude for learning new phonology. Results show a correlation between scores in a grammatical meaning-inferencing aptitude test and cortical thickness of Broca’s area (r(30) = 0.65, p = 0.0202) and other frontal areas (r(30) = 0.66, p = 0.0137). Further, a correlation was found between proficiency in discriminating pitch-change direction and cortical thickness of the right Broca homologue (r(30) = 0.57, p = 0.0006). However, no correlations were found for aptitude for vocabulary learning or phonetic working memory. Results contribute to locating cortical regions important for language-learning aptitude.
Del Re EC, Bouix S, Fitzsimmons J, Blokland G ella AM, Mesholam-Gately R, Wojcik J, Kikinis Z, Kubicki M, Petryshen T, Pasternak O, et al. Diffusion abnormalities in the corpus callosum in first episode schizophrenia: Associated with enlarged lateral ventricles and symptomatology. Psychiatry Res. 2019;277:45–51. doi:10.1016/j.psychres.2019.02.038
INTRODUCTION: Abnormalities in the corpus callosum (CC) and the lateral ventricles (LV) are hallmark features of schizophrenia. These abnormalities have been reported in chronic and in first episode schizophrenia (FESZ). Here we explore further associations between CC and LV in FESZ using diffusion tensor imaging (DTI). METHODS: . Sixteen FESZ patients and 16 healthy controls (HC), matched on age, gender, and handedness participated in the study. Diffusion and structural imaging scans were acquired on a 3T GE Signa magnet. Volumetric measures for LV and DTI measures for five CC subdivisions were completed in both groups. In addition, two-tensor tractography, the latter corrected for free-water (FA), was completed for CC. Correlations between LV and DTI measures of the CC were examined in both groups, while correlations between DTI and clinical measures were examined in only FESZ. RESULTS: Results from two-tensor tractography demonstrated decreased FA and increased trace and radial diffusivity (RD) in the five CC subdivisions in FESZ compared to HC. Central CC diffusion measures in FESZ were significantly correlated with volume of the LV, i.e., decreased FA values were associated with larger LV volume, while increased RD and trace values were associated with larger LV volume. In controls, correlations were also significant, but they were in the opposite direction from FESZ. In addition, decreased FA in FESZ was associated with more positive symptoms. DISCUSSION: Partial volume corrected FA, RD, and trace abnormalities in the CC in FESZ suggest possible de- or dys-myelination, or changes in axonal diameters, all compatible with neurodevelopmental theories of schizophrenia. Correlational findings between the volume of LV and diffusion measures in FESZ reinforce the concept of a link between abnormalities in the LV and CC in early stages of schizophrenia and are also compatible with neurodevelopmental abnormalities in this population.
Hahn A, Strandberg TO, Stomrud E, Nilsson M, van Westen D, Palmqvist S, Ossenkoppele R, Hansson O. Association Between Earliest Amyloid Uptake and Functional Connectivity in Cognitively Unimpaired Elderly. Cereb Cortex. 2019;29(5):2173–2182. doi:10.1093/cercor/bhz020
Alterations in cognitive performance have been noted in nondemented subjects with elevated accumulation of amyloid-β (Aβ) fibrils. However, it is not yet understood whether brain function is already influenced by Aβ deposition during the very earliest stages of the disease. We therefore investigated associations between [18F]Flutemetamol PET, resting-state functional connectivity, gray and white matter structure and cognitive performance in 133 cognitively normal elderly that exhibited normal global Aβ PET levels. [18F]Flutemetamol uptake in regions known to accumulate Aβ fibrils early in preclinical AD (i.e., mainly certain parts of the default-mode network) was positively associated with dynamic but not static functional connectivity (r = 0.77). Dynamic functional connectivity was further related to better cognitive performance (r = 0.21-0.72). No significant associations were found for Aβ uptake with gray matter volume or white matter diffusivity. The findings demonstrate that the earliest accumulation of Aβ fibrils is associated with increased functional connectivity, which occurs before any structural alterations. The enhanced functional connectivity may reflect a compensatory mechanism to maintain high cognitive performance in the presence of increasing amyloid accumulation during the earliest phases of AD.
Synn AJ, Zhang C, Washko GR, epar R ul SJ e E, O\textquoterightConnor GT, Li W, Mittleman MA, Rice MB. Cigarette Smoke Exposure and Radiographic Pulmonary Vascular Morphology in the Framingham Heart Study. Ann Am Thorac Soc. 2019;16(6):698–706. doi:10.1513/AnnalsATS.201811-795OC
Cigarette smoke exposure is a risk factor for many lung diseases, and histologic studies suggest that tobacco-related vasoconstriction and vessel loss plays a role in the development of emphysema. However, it remains unclear how tobacco affects the pulmonary vasculature in general populations with a typical range of tobacco exposure, and whether these changes are detectable by radiographic methods. To determine whether tobacco exposure in a generally healthy population manifests as lower pulmonary blood vessel volumes and vascular pruning on imaging. A total of 2,410 Framingham Heart Study participants with demographic data and smoking history underwent volumetric whole-lung computed tomography from 2008 to 2011. Automated algorithms calculated the total blood volume of all intrapulmonary vessels (TBV), smaller peripheral vessels (defined as cross-sectional area
Herberthson M, Yolcu C, Knutsson H, Westin C-F, Özarslan E. Orientationally-averaged diffusion-attenuated magnetic resonance signal for locally-anisotropic diffusion. Sci Rep. 2019;9(1):4899. doi:10.1038/s41598-019-41317-8
Diffusion-attenuated MR signal for heterogeneous media has been represented as a sum of signals from anisotropic Gaussian sub-domains to the extent that this approximation is permissible. Any effect of macroscopic (global or ensemble) anisotropy in the signal can be removed by averaging the signal values obtained by differently oriented experimental schemes. The resulting average signal is identical to what one would get if the micro-domains are isotropically (e.g., randomly) distributed with respect to orientation, which is the case for "powdered" specimens. We provide exact expressions for the orientationally-averaged signal obtained via general gradient waveforms when the microdomains are characterized by a general diffusion tensor possibly featuring three distinct eigenvalues. This extends earlier results which covered only axisymmetric diffusion as well as measurement tensors. Our results are expected to be useful in not only multidimensional diffusion MR but also solid-state NMR spectroscopy due to the mathematical similarities in the two fields.
Vipin A, Ng KK, Ji F, Shim HY, Lim JKW, Pasternak O, Zhou JH. Amyloid burden accelerates white matter degradation in cognitively normal elderly individuals. Hum Brain Mapp. 2019;40(7):2065–2075. doi:10.1002/hbm.24507
Alterations in parietal and temporal white matter microstructure derived from diffusion tensor imaging occur in preclinical and clinical Alzheimer’s disease. Amyloid beta (Aβ) deposition and such white matter alterations are two pathological hallmarks of Alzheimer’s disease. However, the relationship between these pathologies is not yet understood, partly since conventional diffusion MRI methods cannot distinguish between cellular and extracellular processes. Thus, we studied Aβ-associated longitudinal diffusion MRI changes in Aβ-positive (N = 21) and Aβ-negative (N = 51) cognitively normal elderly obtained from the Alzheimer’s Disease Neuroimaging Initiative dataset using linear mixed models. Aβ-positivity was based on Alzheimer’s Disease Neuroimaging Initiative amyloid-PET recommendations using a standardized uptake value ratio cut-off of 1.11. We used free-water imaging to distinguish cellular and extracellular changes. We found that Aβ-positive subjects had increased baseline right uncinate fasciculus free-water fraction (FW), associated with worse baseline Alzheimer’s disease assessment scale scores. Furthermore, Aβ-positive subjects showed faster decrease in fractional anisotropy (FW-corrected) in the right uncinate fasciculus and faster age-dependent right inferior longitudinal fasciculus FW increases over time. Right inferior longitudinal fasciculus FW increases were associated with greater memory decline. Importantly, these results remained significant after controlling for gray and white matter volume and hippocampal volume. This is the first study to illustrate the influence of Aβ burden on early longitudinal (in addition to baseline) white matter changes in cognitively normal elderly individuals at-risk of Alzheimer’s disease, thus underscoring the importance of longitudinal studies in assessing microstructural alterations in individuals at risk of Alzheimer’s disease prior to symptoms onset.
Washko GR, Nardelli P, Ash SY, Sanchez-Ferrero GV, Rahaghi FN, Come CE, Dransfield MT, Kalhan R, Han MK, Bhatt SP, et al. Arterial Vascular Pruning, Right Ventricular Size, and Clinical Outcomes in Chronic Obstructive Pulmonary Disease. A Longitudinal Observational Study. Am J Respir Crit Care Med. 2019;200(4):454–461. doi:10.1164/rccm.201811-2063OC
Cor pulmonale (right ventricular [RV] dilation) and cor pulmonale parvus (RV shrinkage) are both described in chronic obstructive pulmonary disease (COPD). The identification of emphysema as a shared risk factor suggests that additional disease characterization is needed to understand these widely divergent cardiac processes. To explore the relationship between computed tomography measures of emphysema and distal pulmonary arterial morphology with RV volume, and their association with exercise capacity and mortality in ever-smokers with COPD enrolled in the COPDGene Study. Epicardial (myocardium and chamber) RV volume (RV), distal pulmonary arterial blood vessel volume (arterial BV5: vessels
Szczepankiewicz F, Sjölund J, ahlberg FS, Lätt J, Nilsson M. Tensor-valued diffusion encoding for diffusional variance decomposition (DIVIDE): Technical feasibility in clinical MRI systems. PLoS One. 2019;14(3):e0214238. doi:10.1371/journal.pone.0214238
Microstructure imaging techniques based on tensor-valued diffusion encoding have gained popularity within the MRI research community. Unlike conventional diffusion encoding-applied along a single direction in each shot-tensor-valued encoding employs diffusion encoding along multiple directions within a single preparation of the signal. The benefit is that such encoding may probe tissue features that are not accessible by conventional encoding. For example, diffusional variance decomposition (DIVIDE) takes advantage of tensor-valued encoding to probe microscopic diffusion anisotropy independent of orientation coherence. The drawback is that tensor-valued encoding generally requires gradient waveforms that are more demanding on hardware; it has therefore been used primarily in MRI systems with relatively high performance. The purpose of this work was to explore tensor-valued diffusion encoding on clinical MRI systems with varying performance to test its technical feasibility within the context of DIVIDE. We performed whole-brain imaging with linear and spherical b-tensor encoding at field strengths between 1.5 and 7 T, and at maximal gradient amplitudes between 45 and 80 mT/m. Asymmetric gradient waveforms were optimized numerically to yield b-values up to 2 ms/μm2. Technical feasibility was assessed in terms of the repeatability, SNR, and quality of DIVIDE parameter maps. Variable system performance resulted in echo times between 83 to 115 ms and total acquisition times of 6 to 9 minutes when using 80 signal samples and resolution 2×2×4 mm3. As expected, the repeatability, signal-to-noise ratio and parameter map quality depended on hardware performance. We conclude that tensor-valued encoding is feasible for a wide range of MRI systems-even at 1.5 T with maximal gradient waveform amplitudes of 33 mT/m-and baseline experimental design and quality parameters for all included configurations. This demonstrates that tissue features, beyond those accessible by conventional diffusion encoding, can be explored on a wide range of MRI systems.
Ji F, Pasternak O, Ng KK, Chong JSX, Liu S, Zhang L, Shim HY, Loke YM, Tan BY, Venketasubramanian N, et al. White matter microstructural abnormalities and default network degeneration are associated with early memory deficit in Alzheimer’s disease continuum. Sci Rep. 2019;9(1):4749. doi:10.1038/s41598-019-41363-2
Instead of assuming a constant relationship between brain abnormalities and memory impairment, we aimed to examine the stage-dependent contributions of multimodal brain structural and functional deterioration to memory impairment in the Alzheimer’s disease (AD) continuum. We assessed grey matter volume, white matter (WM) microstructural measures (free-water (FW) and FW-corrected fractional anisotropy), and functional connectivity of the default mode network (DMN) in 54 amnestic mild cognitive impairment (aMCI) and 46 AD. We employed a novel sparse varying coefficient model to investigate how the associations between abnormal brain measures and memory impairment varied throughout disease continuum. We found lower functional connectivity in the DMN was related to worse memory across AD continuum. Higher widespread white matter FW and lower fractional anisotropy in the fornix showed a stronger association with memory impairment in the early aMCI stage; such WM-memory associations then decreased with increased dementia severity. Notably, the effect of the DMN atrophy occurred in early aMCI stage, while the effect of the medial temporal atrophy occurred in the AD stage. Our study provided evidence to support the hypothetical progression models underlying memory dysfunction in AD cascade and underscored the importance of FW increases and DMN degeneration in early stage of memory deficit.