Publications by Year: 2022

2022

Keijzer HM, Duering M, Pasternak O, Meijer FJA, Verhulst MMLH, Tonino BAR, Blans MJ, Hoedemaekers CWE, Klijn CJM, Hofmeijer J. Free Water Corrected Diffusion Tensor Imaging Discriminates Between Good and Poor Outcomes of Comatose Patients After Cardiac Arres. Eur Radiol. 2022. doi:10.1007/s00330-022-09245-w
OBJECTIVES: Approximately 50% of comatose patients after cardiac arrest never regain consciousness. Cerebral ischaemia may lead to cytotoxic and/or vasogenic oedema, which can be detected by diffusion tensor imaging (DTI). Here, we evaluate the potential value of free water corrected mean diffusivity (MD) and fractional anisotropy (FA) based on DTI, for the prediction of neurological recovery of comatose patients after cardiac arrest. METHODS: A total of 50 patients after cardiac arrest were included in this prospective cohort study in two Dutch hospitals. DTI was obtained 2-4 days after cardiac arrest. Outcome was assessed at 6 months, dichotomised as poor (cerebral performance category 3-5; n = 20) or good (n = 30) neurological outcome. We calculated the whole brain mean MD and FA and compared between patients with good and poor outcomes. In addition, we compared a preliminary prediction model based on clinical parameters with or without the addition of MD and FA. RESULTS: We found significant differences between patients with good and poor outcome of mean MD (good: 726 [702-740] × 10-6 mm2/s vs. poor: 663 [575-736] × 10-6 mm2/s; p = 0.01) and mean FA (0.30 ± 0.03 vs. 0.28 ± 0.03; p = 0.03). An exploratory prediction model combining clinical parameters, MD and FA increased the sensitivity for reliable prediction of poor outcome from 60 to 85%, compared to the model containing clinical parameters only, but confidence intervals are overlapping. CONCLUSIONS: Free water-corrected MD and FA discriminate between patients with good and poor outcomes after cardiac arrest and hold the potential to add to multimodal outcome prediction. KEY POINTS: • Whole brain mean MD and FA differ between patients with good and poor outcome after cardiac arrest. • Free water-corrected MD can better discriminate between patients with good and poor outcome than uncorrected MD. • A combination of free water-corrected MD (sensitive to grey matter abnormalities) and FA (sensitive to white matter abnormalities) holds potential to add to the prediction of outcome.
iaz AAD \, Nardelli P, Wang W, epar R en SJ e E, Yen A, Kligerman S, Maselli DJ, Dolliver WR, Tsao A, Orejas J e L, et al. Artificial Intelligence-based CT Assessment of Bronchiectasis: The COPDGene Study. Radiology. 2022:221109. doi:10.1148/radiol.221109
Background CT is the standard method used to assess bronchiectasis. A higher airway-to-artery diameter ratio (AAR) is typically used to identify enlarged bronchi and bronchiectasis; however, current imaging methods are limited in assessing the extent of this metric in CT scans. Purpose To determine the extent of AARs using an artificial intelligence-based chest CT and assess the association of AARs with exacerbations over time. Materials and Methods In a secondary analysis of ever-smokers from the prospective, observational, multicenter COPDGene study, AARs were quantified using an artificial intelligence tool. The percentage of airways with AAR greater than 1 (a measure of airway dilatation) in each participant on chest CT scans was determined. Pulmonary exacerbations were prospectively determined through biannual follow-up (from July 2009 to September 2021). Multivariable zero-inflated regression models were used to assess the association between the percentage of airways with AAR greater than 1 and the total number of pulmonary exacerbations over follow-up. Covariates included demographics, lung function, and conventional CT parameters. Results Among 4192 participants (median age, 59 years; IQR, 52-67 years; 1878 men [45%]), 1834 had chronic obstructive pulmonary disease (COPD). During a 10-year follow-up and in adjusted models, the percentage of airways with AARs greater than 1 (quartile 4 vs 1) was associated with a higher total number of exacerbations (risk ratio [RR], 1.08; 95% CI: 1.02, 1.15; P = .01). In participants meeting clinical and imaging criteria of bronchiectasis (ie, clinical manifestations with >=3% of AARs >1) versus those who did not, the RR was 1.37 (95% CI: 1.31, 1.43; P < .001). Among participants with COPD, the corresponding RRs were 1.10 (95% CI: 1.02, 1.18; P = .02) and 1.32 (95% CI: 1.26, 1.39; P < .001), respectively. Conclusion In ever-smokers with chronic obstructive pulmonary disease, artificial intelligence-based CT measures of bronchiectasis were associated with more exacerbations over time. Clinical trial registration no. NCT00608764 © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Schiebler and Seo in this issue.
Millman ZB, Hwang M, Sydnor VJ, Reid BE, Goldenberg JE, Talero JN, Bouix S, Shenton ME, Öngür D, Shinn AK. Auditory Hallucinations, Childhood Sexual Abuse, and Limbic Gray Matter Volume in a Transdiagnostic Sample of People With Psychosis. Schizophrenia (Heidelb). 2022;8(1):118. doi:10.1038/s41537-022-00323-y
Childhood sexual abuse (CSA) is a potentially unique risk factor for auditory hallucinations (AH), but few studies have examined the moderating effects of sex or the association of CSA with limbic gray matter volume (GMV) in transdiagnostic samples of people with psychotic disorders. Here we found that people with psychotic disorders reported higher levels of all surveyed maltreatment types (e.g., physical abuse) than healthy controls, but people with psychotic disorders with AH (n = 41) reported greater CSA compared to both those without AH (n = 37; t = -2.21, p = .03) and controls (n = 37; t = -3.90, p < .001). Among people with psychosis, elevated CSA was most pronounced among females with AH (sex × AH status: F = 4.91, p = .009), held controlling for diagnosis, medications, and other maltreatment (F = 3.88, p = .02), and correlated with the current severity of AH (r = .26, p = .03) but not other symptoms (p’s > .16). Greater CSA among patients related to larger GMV of the left amygdala accounting for AH status, diagnosis, medications, and other maltreatment (t = 2.12, p = .04). Among people with psychosis, females with AH may represent a unique subgroup with greater CSA. Prospective high-risk studies integrating multiple measures of maltreatment and brain structure/function may help elucidate the mechanisms linking CSA with amygdala alterations and AH.
Chamroukhi F, Brivet S, Savadjiev P, Coates M, Forghani R. DECT-CLUST: Dual-Energy CT Image Clustering and Application to Head and Neck Squamous Cell Carcinoma Segmentation. Diagnostics (Basel). 2022;12(12):3072. doi:10.3390/diagnostics12123072
Dual-energy computed tomography (DECT) is an advanced CT computed tomography scanning technique enabling material characterization not possible with conventional CT scans. It allows the reconstruction of energy decay curves at each 3D image voxel, representing varied image attenuation at different effective scanning energy levels. In this paper, we develop novel unsupervised learning techniques based on mixture models and functional data analysis models to the clustering of DECT images. We design functional mixture models that integrate spatial image context in mixture weights, with mixture component densities being constructed upon the DECT energy decay curves as functional observations. We develop dedicated expectation-maximization algorithms for the maximum likelihood estimation of the model parameters. To our knowledge, this is the first article to develop statistical functional data analysis and model-based clustering techniques to take advantage of the full spectral information provided by DECT. We evaluate the application of DECT to head and neck squamous cell carcinoma. Current image-based evaluation of these tumors in clinical practice is largely qualitative, based on a visual assessment of tumor anatomic extent and basic one- or two-dimensional tumor size measurements. We evaluate our methods on 91 head and neck cancer DECT scans and compare our unsupervised clustering results to tumor contours traced manually by radiologists, as well as to several baseline algorithms. Given the inter-rater variability even among experts at delineating head and neck tumors, and given the potential importance of tissue reactions surrounding the tumor itself, our proposed methodology has the potential to add value in downstream machine learning applications for clinical outcome prediction based on DECT data in head and neck cancer.