Publications by Year: 2020

2020

Andersen KW, Lasič S, Lundell H, Nilsson M, Topgaard D, Sellebjerg F, Szczepankiewicz F, Siebner HR, Blinkenberg M, Dyrby TB. Disentangling white-matter damage from physiological fibre orientation dispersion in multiple sclerosis. Brain Commun. 2020;2(2):fcaa077. doi:10.1093/braincomms/fcaa077
Multiple sclerosis leads to diffuse damage of the central nervous system, affecting also the normal-appearing white matter. Demyelination and axonal degeneration reduce regional fractional anisotropy in normal-appearing white matter, which can be routinely mapped with diffusion tensor imaging. However, the standard fractional anisotropy metric is also sensitive to physiological variations in orientation dispersion of white matter fibres. This complicates the detection of disease-related damage in large parts of cerebral white matter where microstructure physiologically displays a high degree of fibre dispersion. To resolve this ambiguity, we employed a novel tensor-valued encoding method for diffusion MRI, which yields a microscopic fractional anisotropy metric that is unaffected by regional variations in orientation dispersion. In 26 patients with relapsing-remitting multiple sclerosis, 14 patients with primary-progressive multiple sclerosis and 27 age-matched healthy controls, we compared standard fractional anisotropy mapping with the novel microscopic fractional anisotropy mapping method, focusing on normal-appearing white matter. Mean microscopic fractional anisotropy and standard fractional anisotropy of normal-appearing white matter were significantly reduced in both patient groups relative to healthy controls, but microscopic fractional anisotropy yielded a better reflection of disease-related white-matter alterations. The reduction in mean microscopic fractional anisotropy showed a significant positive linear relationship with physical disability, as reflected by the expanded disability status scale. Mean reduction of microscopic fractional anisotropy in normal-appearing white matter also scaled positively with individual cognitive dysfunction, as measured with the symbol digit modality test. Mean microscopic fractional anisotropy reduction in normal-appearing white matter also showed a positive relationship with total white-matter lesion load as well as lesion load in specific tract systems. None of these relationships between normal-appearing white-matter microstructure and clinical, cognitive or structural measures emerged when using mean fractional anisotropy. Together, the results provide converging evidence that microscopic fractional anisotropy mapping substantially advances the assessment of cerebral white matter in multiple sclerosis by disentangling microstructure damage from variations in physiological fibre orientation dispersion at the stage of data acquisition. Since tensor-valued encoding can be implemented in routine diffusion MRI, microscopic fractional anisotropy mapping bears considerable potential for the future assessment of disease progression in normal-appearing white matter in both relapsing-remitting and progressive forms of multiple sclerosis as well as other white-matter-related brain diseases.
Hupfeld KE, McGregor HR, Lee JK, Beltran NE, Kofman IS, De Dios YE, Reuter-Lorenz PA, Riascos RF, Pasternak O, Wood SJ, et al. The Impact of 6 and 12 Months in Space on Human Brain Structure and Intracranial Fluid Shifts. Cereb Cortex Commun. 2020;1(1):tgaa023. doi:10.1093/texcom/tgaa023
As plans develop for Mars missions, it is important to understand how long-duration spaceflight impacts brain health. Here we report how 12-month ( = 2 astronauts) versus 6-month ( = 10 astronauts) missions impact brain structure and fluid shifts. We collected MRI scans once before flight and four times after flight. Astronauts served as their own controls; we evaluated pre- to postflight changes and return toward preflight levels across the 4 postflight points. We also provide data to illustrate typical brain changes over 7 years in a reference dataset. Twelve months in space generally resulted in larger changes across multiple brain areas compared with 6-month missions and aging, particularly for fluid shifts. The majority of changes returned to preflight levels by 6 months after flight. Ventricular volume substantially increased for 1 of the 12-month astronauts (left: +25%, right: +23%) and the 6-month astronauts (left: 17 ± 12%, right: 24 ± 6%) and exhibited little recovery at 6 months. Several changes correlated with past flight experience; those with less time between subsequent missions had larger preflight ventricles and smaller ventricular volume increases with flight. This suggests that spaceflight-induced ventricular changes may endure for long periods after flight. These results provide insight into brain changes that occur with long-duration spaceflight and demonstrate the need for closer study of fluid shifts.
Lv J, Di Biase M, Cash RFH, Cocchi L, Cropley VL, Klauser P, Tian Y, Bayer J, Schmaal L, Cetin-Karayumak S, et al. Individual Deviations From Normative Models of Brain Structure in a Large Cross-Sectional Schizophrenia Cohort. Mol Psychiatry. 2020;26(7):3512–23. doi:10.1038/s41380-020-00882-5
The heterogeneity of schizophrenia has defied efforts to derive reproducible and definitive anatomical maps of structural brain changes associated with the disorder. We aimed to map deviations from normative ranges of brain structure for individual patients and evaluate whether the loci of individual deviations recapitulated group-average brain maps of schizophrenia pathology. For each of 48 white matter tracts and 68 cortical regions, normative percentiles of variation in fractional anisotropy (FA) and cortical thickness (CT) were established using diffusion-weighted and structural MRI from healthy adults (n = 195). Individuals with schizophrenia (n = 322) were classified as either within the normative range for healthy individuals of the same age and sex (5-95% percentiles), infra-normal (<5% percentile) or supra-normal (>95% percentile). Repeating this classification for each tract and region yielded a deviation map for each individual. Compared to the healthy comparison group, the schizophrenia group showed widespread reductions in FA and CT, involving virtually all white matter tracts and cortical regions. Paradoxically, however, no more than 15-20% of patients deviated from the normative range for any single tract or region. Furthermore, 79% of patients showed infra-normal deviations for at least one locus (healthy individuals: 59 ± 2%, p < 0.001). Thus, while infra-normal deviations were common among patients, their anatomical loci were highly inconsistent between individuals. Higher polygenic risk for schizophrenia associated with a greater number of regions with infra-normal deviations in CT (r = -0.17, p = 0.006). We conclude that anatomical loci of schizophrenia-related changes are highly heterogeneous across individuals to the extent that group-consensus pathological maps are not representative of most individual patients. Normative modeling can aid in parsing schizophrenia heterogeneity and guiding personalized interventions.
Savadjiev P, Reinhold C, Martin D, Forghani R. Knowledge Based Versus Data Based: A Historical Perspective on a Continuum of Methodologies for Medical Image Analysis. Neuroimaging Clin N Am. 2020;30(4):401–415. doi:10.1016/j.nic.2020.06.002
The advent of big data and deep learning algorithms has promoted a major shift toward data-driven methods in medical image analysis recently. However, the medical image analysis field has a long and rich history inclusive of both knowledge-driven and data-driven methodologies. In the present article, we provide a historical review of an illustrative sample of medical image analysis methods and locate them along a knowledge-driven versus data-driven continuum. In doing so, we highlight the historical importance as well as current-day relevance of more traditional, knowledge-based artificial intelligence approaches and their complementarity with fully data-driven techniques such as deep learning.
Rushmore RJ, Wilson-Braun P, Papadimitriou G, Ng I, Rathi Y, Zhang F, O’Donnell LJ, Kubicki M, Bouix S, Yeterian E, et al. 3D Exploration of the Brainstem in 50-Micron Resolution MRI. Front Neuroanat. 2020;14:40. doi:10.3389/fnana.2020.00040
The brainstem, a structure of vital importance in mammals, is currently becoming a principal focus in cognitive, affective, and clinical neuroscience. Midbrain, pontine and medullary structures serve as the conduit for signals between the forebrain and spinal cord, are the epicenter of cranial nerve-circuits and systems, and subserve such integrative functions as consciousness, emotional processing, pain, and motivation. In this study, we parcellated the nuclear masses and the principal fiber pathways that were visible in a high-resolution T2-weighted MRI dataset of 50-micron isotropic voxels of a postmortem human brainstem. Based on this analysis, we generated a detailed map of the human brainstem. To assess the validity of our maps, we compared our observations with histological maps of traditional human brainstem atlases. Given the unique capability of MRI-based morphometric analysis in generating and preserving the morphology of 3D objects from individual 2D sections, we reconstructed the motor, sensory and integrative neural systems of the brainstem and rendered them in 3D representations. We anticipate the utilization of these maps by the neuroimaging community for applications in basic neuroscience as well as in neurology, psychiatry, and neurosurgery, due to their versatile computational nature in 2D and 3D representations in a publicly available capacity.
Hegde RR, Kelly S, Lutz O, Guimond S, Karayumak SC, Mike L, Mesholam-Gately RI, Pasternak O, Kubicki M, Eack SM, et al. Association of white matter microstructure and extracellular free-water with cognitive performance in the early course of schizophrenia. Psychiatry Res Neuroimaging. 2020;305:111159. doi:10.1016/j.pscychresns.2020.111159
Schizophrenia (SZ) is proposed as a disorder of dysconnectivity underlying cognitive impairments and clinical manifestations. Although previous studies have shown extracellular changes in white matter of first-episode SZ, little is known about the transition period towards chronicity and its association with cognition. Free-water (FW) imaging was applied to 79 early course SZ participants and 29 controls to detect white matter axonal and extracellular differences during this phase of illness. Diffusion-weighted images were collected from two sites, harmonized, and processed using a pipeline separately modeling water diffusion in tissue (FAt) and extracellular space (FW). Tract-Based Spatial Statistics was performed using the ENIGMA-DTI protocols. SZ showed FAt reductions in the posterior thalamic radiation (PTR) and FW elevations in the cingulum compared to controls, suggesting FAt and FW changes in the early course of SZ. In SZ, greater FAt of the fornix & stria terminalis (FXST) was positively associated with Theory of Mind performance; average whole-brain FAt, FAt of the FXST and the PTR were positively associated with greater working memory performance; average whole-brain FAt was positively associated with visual learning. Further studies are necessary to better understand the neurobiological mechanisms of SZ for developing intervention strategies to preserve brain structure and function.
Washko GR, Nardelli P, Ash SY, Rahaghi FN, Sanchez-Ferrero GV, Come CE, Dransfield MT, Kalhan R, Han MK, Bhatt SP, et al. Smaller Left Ventricle Size at Noncontrast CT Is Associated with Lower Mortality in COPDGene Participants. Radiology. 2020;296(1):208–215. doi:10.1148/radiol.2020191793
Background Smokers with chronic obstructive pulmonary disease (COPD) have smaller left ventricles (LVs) due to reduced preload. Skeletal muscle wasting is also common in COPD, but less is known about its contribution to LV size. Purpose To explore the relationships between CT metrics of emphysema, venous vascular volume, and sarcopenia with the LV epicardial volume (LV) (myocardium and chamber) estimated from chest CT images in participants with COPD and then to determine the clinical relevance of the LV in multivariable models, including sex and anthropomorphic metrics. Materials and Methods The COPDGene study (ClinicalTrials.gov identifier: NCT00608764) is an ongoing prospective longitudinal observational investigation that began in 2006. LV, distal pulmonary venous blood volume for vessels smaller than 5 mm in cross section (BV5), CT emphysema, and pectoralis muscle area were retrospectively extracted from 3318 nongated, unenhanced COPDGene CT scans. Multivariable linear and Cox regression models were used to explore the association between emphysema, venous BV5, pectoralis muscle area, and LV as well as the association of LV with health status using the St George’s Respiratory Questionnaire, 6-minute walk distance, and all-cause mortality. Results The median age of the cohort was 64 years (interquartile range, 57-70 years). Of the 2423 participants, 1806 were men and 617 were African American. The median LV between Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1 and GOLD 4 COPD was reduced by 13.9% in women and 17.7% in men ( .001 for both). In fully adjusted models, higher emphysema percentage (β = -4.2; 95% confidence interval [CI]: -5.0, -3.4; .001), venous BV5 (β = 7.0; 95% CI: 5.7, 8.2; .001), and pectoralis muscle area (β = 2.7; 95% CI: 1.2, 4.1; .001) were independently associated with reduced LV. Reductions in LV were associated with improved health status (β = 0.3; 95% CI: 0.1, 0.4) and 6-minute walk distance (β = -12.2; 95% CI: -15.2, -9.3). These effects were greater in women than in men. The effect of reduced LV on mortality (hazard ratio: 1.07; 95% CI: 1.05, 1.09) did not vary by sex. Conclusion In women more than men with chronic obstructive pulmonary disease, a reduction in the estimated left ventricle epicardial volume correlated with a loss of pulmonary venous vasculature, greater pectoralis muscle sarcopenia, and lower all-cause mortality. © RSNA, 2020
Hansson B, Bloch KM, Owman T, Nilsson M, Lätt J, Olsrud J, Björkman-Burtscher IM. Subjectively Reported Effects Experienced in an Actively Shielded 7T MRI: A Large-Scale Study. J Magn Reson Imaging. 2020;52(4):1265–1276. doi:10.1002/jmri.27139
BACKGROUND: Ultrahigh-field (UHF) MRI advances towards clinical use. Patient compliance is generally high, but few large-scale studies have investigated the effects experienced in 7T MRI systems, especially considering peripheral nerve stimulation (PNS) and caregiving. PURPOSE: To evaluate the quantity, the intensity, and subjective experiences from short-term effects, focusing on the levels of comfort and compliance of subjects. STUDY TYPE: Prospective. POPULATION: In all, 954 consecutive MRIs in 801 subjects for 3 years. FIELD STRENGTH: 7T. ASSESSMENT: After the 7T examination, a questionnaire was used to collect data. STATISTICAL TESTS: Descriptive statistics, Spearman’s rank correlation, Mann-Whitney U-test, and t-test.
Lampinen B, Zampeli A, Björkman-Burtscher IM, Szczepankiewicz F, en KK, Strandberg MC, Nilsson M. Tensor-valued diffusion MRI differentiates cortex and white matter in malformations of cortical development associated with epilepsy. Epilepsia. 2020;61(8):1701–1713. doi:10.1111/epi.16605
OBJECTIVE: Delineation of malformations of cortical development (MCD) is central in presurgical evaluation of drug-resistant epilepsy. Delineation using magnetic resonance imaging (MRI) can be ambiguous, however, because the conventional T - and T -weighted contrasts depend strongly on myelin for differentiation of cortical tissue and white matter. Variations in myelin content within both cortex and white matter may cause MCD findings on MRI to change size, become undetectable, or disagree with histopathology. The novel tensor-valued diffusion MRI (dMRI) technique maps microscopic diffusion anisotropy, which is sensitive to axons rather than myelin. This work investigated whether tensor-valued dMRI may improve differentiation of cortex and white matter in the delineation of MCD.