Publications by Year: 2020

2020

Zhang F, Noh T, Juvekar P, Frisken SF, Rigolo L, Norton I, Kapur T, Pujol S, Wells W, Yarmarkovich A, et al. SlicerDMRI: Diffusion MRI and Tractography Research Software for Brain Cancer Surgery Planning and Visualization. JCO Clin Cancer Inform. 2020;4:299–309. doi:10.1200/CCI.19.00141
PURPOSE: We present SlicerDMRI, an open-source software suite that enables research using diffusion magnetic resonance imaging (dMRI), the only modality that can map the white matter connections of the living human brain. SlicerDMRI enables analysis and visualization of dMRI data and is aimed at the needs of clinical research users. SlicerDMRI is built upon and deeply integrated with 3D Slicer, a National Institutes of Health-supported open-source platform for medical image informatics, image processing, and three-dimensional visualization. Integration with 3D Slicer provides many features of interest to cancer researchers, such as real-time integration with neuronavigation equipment, intraoperative imaging modalities, and multimodal data fusion. One key application of SlicerDMRI is in neurosurgery research, where brain mapping using dMRI can provide patient-specific maps of critical brain connections as well as insight into the tissue microstructure that surrounds brain tumors. PATIENTS AND METHODS: In this article, we focus on a demonstration of SlicerDMRI as an informatics tool to enable end-to-end dMRI analyses in two retrospective imaging data sets from patients with high-grade glioma. Analyses demonstrated here include conventional diffusion tensor analysis, advanced multifiber tractography, automated identification of critical fiber tracts, and integration of multimodal imagery with dMRI. RESULTS: We illustrate the ability of SlicerDMRI to perform both conventional and advanced dMRI analyses as well as to enable multimodal image analysis and visualization. We provide an overview of the clinical rationale for each analysis along with pointers to the SlicerDMRI tools used in each. CONCLUSION: SlicerDMRI provides open-source and clinician-accessible research software tools for dMRI analysis. SlicerDMRI is available for easy automated installation through the 3D Slicer Extension Manager.
Finsterwalder S, Vlegels N, Gesierich B, Caballero M \ AA, Weaver NA, Franzmeier N, Georgakis MK, Konieczny MJ, Koek HL, Karch CM, et al. Small vessel disease more than Alzheimer’s disease determines diffusion MRI alterations in memory clinic patients. Alzheimers Dement. 2020;16(11):1504–1514. doi:10.1002/alz.12150
INTRODUCTION: Microstructural alterations as assessed by diffusion tensor imaging (DTI) are key findings in both Alzheimer’s disease (AD) and small vessel disease (SVD). We determined the contribution of each of these conditions to diffusion alterations.
Baxi M, Di Biase MA, Lyall AE, Cetin-Karayumak S, Seitz J, Ning L, Makris N, Rosene D, Kubicki M, Rathi Y. Quantifying Genetic and Environmental Influence on Gray Matter Microstructure Using Diffusion MRI. Cereb Cortex. 2020;30(12):6191–6205. doi:10.1093/cercor/bhaa174
Early neuroimaging work in twin studies focused on studying genetic and environmental influence on gray matter macrostructure. However, it is also important to understand how gray matter microstructure is influenced by genes and environment to facilitate future investigations of their influence in mental disorders. Advanced diffusion MRI (dMRI) measures allow more accurate assessment of gray matter microstructure compared with conventional diffusion tensor measures. To understand genetic and environmental influence on gray matter, we used diffusion and structural MRI data from a large twin and sibling study (N = 840) and computed advanced dMRI measures including return to origin probability (RTOP), which is heavily weighted toward intracellular and intra-axonal restricted spaces, and mean squared displacement (MSD), more heavily weighted to diffusion in extracellular space and large cell bodies in gray matter. We show that while macrostructural features like brain volume are mainly genetically influenced, RTOP and MSD can together tap into both genetic and environmental influence on microstructure.
Kinzel P, Marx CE, Sollmann N, Hartl E, Guenette JP, Kaufmann D, Bouix S, Pasternak O, Rathi Y, Coleman MJ, et al. Serum Neurosteroid Levels Are Associated With Cortical Thickness in Individuals Diagnosed With Posttraumatic Stress Disorder and History of Mild Traumatic Brain Injury. Clin EEG Neurosci. 2020;51(4):285–299. doi:10.1177/1550059420909676
Posttraumatic stress disorder (PTSD) co-occurring with mild traumatic brain injury (mTBI) is common in veterans. Worse clinical outcome in those with PTSD has been associated with decreased serum neurosteroid levels. Furthermore, decreased cortical thickness has been associated with both PTSD and mTBI. However, it is not known whether decreased neurosteroids are associated with decreased cortical thickness in PTSD co-occurring with mTBI. This study included 141 individuals divided into the following groups: () mTBI group (n = 32 [10 female, 22 male] veterans with a history of mTBI); () PTSD + mTBI group (n = 41 [6 female, 35 male] veterans with current PTSD with a history of mTBI); and () control group (n = 68 [35 female, 33 male] control participants), which were acquired through the Injury and Traumatic Stress (INTRuST) Clinical Consortium. Subjects underwent clinical assessment, magnetic resonance imaging at 3 T, and serum neurosteroid quantifications of allopregnanolone (ALLO) and pregnenolone (PREGN). Group differences in cortical thickness and associations between serum neurosteroid levels and cortical thickness were investigated. Cortical thickness was decreased in the PTSD + mTBI group compared with the other groups. In the PTSD + mTBI group, decreased cortical thickness was also associated with lower serum ALLO (right superior frontal cortex) and lower serum PREGN (left middle temporal and right orbitofrontal cortex). Cortical thickness in the middle temporal and orbitofrontal cortex was associated with PTSD symptom severity. There were no significant associations between neurosteroids and cortical thickness in the mTBI or control groups. Decreased cortical thickness in individuals with PTSD + mTBI is associated with decreased serum neurosteroid levels and greater PTSD symptom severity. Causality is unclear. However, future studies might investigate whether treatment with neurosteroids could counteract stress-induced neural atrophy in PTSD + mTBI by potentially preserving cortical thickness.
Pallanti S, Grassi E, Makris N, Gasic GP, Hollander E. Neurocovid-19: A clinical neuroscience-based approach to reduce SARS-CoV-2 related mental health sequelae. J Psychiatr Res. 2020;130:215–217. doi:10.1016/j.jpsychires.2020.08.008
Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2, is a disaster due to not only its psychosocial impact but it also to its direct effects on the brain. The latest evidence suggests it has neuroinvasive mechanisms, in addition to neurological manifestations, and as seen in past pandemics, long-term sequelae are expected. Specific and well-structured interventions are necessary, and that’s why it’s important to ensure a continuity between primary care, emergency medicine, and psychiatry. Evidence shows that 2003 SARS (Severe Acute Respiratory Syndrome) survivors developed persistent psychiatric comorbidities after the infection, in addition to Chronic Fatigue Syndrome. A proper stratification of patients according not only to psychosocial factors but also an inflammatory panel and SARS-Cov-2’s direct effects on the central nervous system (CNS) and the immune system, may improve outcomes. The complexity of COVID-19’s pathology and the impact on the brain requires appropriate screening that has to go beyond the psychosocial impact, taking into account how stress and neuroinflammation affects the brain. This is a call for a clinical multidisciplinary approach to treat and prevent Sars-Cov-2 mental health sequelae.
Lewandowski KE, Bouix S, Öngür D, Shenton ME. Neuroprogression across the Early Course of Psychosis. J Psychiatr Brain Sci. 2020;5. doi:10.20900/jpbs.20200002
Psychotic disorders are severe, debilitating, and even fatal. The development of targeted and effective interventions for psychosis depends upon on clear understanding of the timing and nature of disease progression to target processes amenable to intervention. Strong evidence suggests early and ongoing neuroprogressive changes, but timing and inflection points remain unclear and likely differ across cognitive, clinical, and brain measures. Additionally, granular evidence across modalities is particularly sparse in the "bridging years" between first episode and established illness-years that may be especially critical for improving outcomes and during which interventions may be maximally effective. Our objective is the systematic, multimodal characterization of neuroprogression through the early course of illness in a cross-diagnostic sample of patients with psychosis. We aim to (1) interrogate neurocognition, structural brain measures, and network connectivity at multiple assessments over the first eight years of illness to map neuroprogressive trajectories, and (2) examine trajectories as predictors of clinical and functional outcomes. We will recruit 192 patients with psychosis and 36 healthy controls. Assessments will occur at baseline and 8- and 16-month follow ups using clinical, cognitive, and imaging measures. We will employ an accelerated longitudinal design (ALD), which permits ascertainment of data across a longer timeframe and at more frequent intervals than would be possible in a single cohort longitudinal study. Results from this study are expected to hasten identification of actionable treatment targets that are closely associated with clinical outcomes, and identify subgroups who share common neuroprogressive trajectories toward the development of individualized treatments.
Khayat CD, Khorassani ME, c SA, Harroche A, Dahmane A, Pujol S, Henriet C eline, de Moerloose P, Bridey F coise. Pharmacology, Efficacy and Safety of a Triple-Secured Fibrinogen Concentrate in Children Less than or Equal to 12 Years with Afibrinogenaemia. Thromb Haemost. 2020;120(6):957–967. doi:10.1055/s-0040-1710015
OBJECTIVE: To date, the use of a fibrinogen concentrate (FC) administered in children with inherited fibrinogen deficiency is poorly documented. Treatment modalities may differ from those of adults. The aim of this study was to investigate the pharmacokinetics (PK), efficacy (bleeding/surgery) and safety of a triple-secured FC (FibCLOT, LFB, France) in young patients aged of 12 years or less. METHODS: This was a prospective, non-comparative, multicentre, phase 2-3 study. Estimated PK parameters were based on population PK modelling. Target fibrinogen levels were 1.2 and 1.0 g/L for major and minor events, respectively. In vivo recovery (IVR) was calculated at study entry to tailor the dose.
Pham QD, Carlström G, Lafon O, Sparr E, Topgaard D. Quantification of the amount of mobile components in intact stratum corneum with natural-abundance C solid-state NMR. Phys Chem Chem Phys. 2020;22(12):6572–6583. doi:10.1039/d0cp00079e
The outermost layer of the skin is the stratum corneum (SC), which is mainly comprised of solid proteins and lipids. Minor amounts of mobile proteins and lipids are crucial for the macroscopic properties of the SC, including softness, elasticity and barrier function. Still this minor number of mobile components are not well characterized in terms of structure or amount. Conventional quantitative direct polarization (Q-DP) 13C solid-state NMR gives signal amplitudes proportional to concentrations, but fails to quantify the SC mobile components because of spectral overlap with the overwhelming signals from the solids. Spectral editing with the INEPT scheme suppresses the signals from solids, but also modulates the amplitudes of the mobile components depending on their values of the transverse relaxation times T2, scalar couplings JCH, and number of covalently bound hydrogens nH. This study describes a quantitative INEPT (Q-INEPT) method relying on systematic variation of the INEPT timing variables to estimate T2, JCH, nH, and amplitude for each of the resolved resonances from the mobile components. Q-INEPT is validated with a series of model systems containing molecules with different hydrophobicity and dynamics. For selected systems where Q-DP is applicable, the results of Q-INEPT and Q-DP are similar with respect to the linearity and uncertainty of the obtained molar ratios. Utilizing a reference compound with known concentration, we quantify the concentrations of mobile lipids and proteins within the mainly solid SC. By melting all lipids at high temperature, we obtain the total lipid concentration. These Q-INEPT results are the first steps towards a quantitative understanding of the relations between mobile component concentrations and SC macroscopic properties.
Nobile-Orazio E, Pujol S, Kasiborski F, Ouaja R, Corte GD, Bonek R, Cocito D, Schenone A. An international multicenter efficacy and safety study of IqYmune in initial and maintenance treatment of patients with chronic inflammatory demyelinating polyradiculoneuropathy: PRISM study. J Peripher Nerv Syst. 2020;25(4):356–365. doi:10.1111/jns.12408
This prospective, multicenter, single-arm, open-label phase 3 study aimed to evaluate the efficacy and safety of IqYmune in patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Patients received one induction dose of 2 g/kg and then seven maintenance doses of 1 g/kg at 3-week intervals. The primary endpoint was the responder rate at the end of study (EOS), defined as an improvement of >=1 point on the adjusted inflammatory neuropathy cause and treatment (INCAT) disability scale. The responder rate was compared with the responder rate of a historical placebo group (33.3%). Secondary endpoints included changes from baseline to EOS of adjusted INCAT disability score, grip strength, Medical Research Council (MRC) sum score, Rasch-modified MRC sum score, Rasch-built overall disability scale score and the clinical global impression. Forty-two patients, including 23 Ig-na ıve and 19 Ig-pre-treated, were included in the efficacy set. The overall response rate at EOS was 76.2% (95% confidence interval [60.5%-87.9%]). The superiority of IqYmune compared to the historical placebo control was demonstrated (P
Gurholt TP, Haukvik UK, Lonning V, Jönsson EG, Pasternak O, Agartz I. Microstructural White Matter and Links With Subcortical Structures in Chronic Schizophrenia: A Free-Water Imaging Approach. Front Psychiatry. 2020;11:56. doi:10.3389/fpsyt.2020.00056
Schizophrenia is a severe mental disorder with often a chronic course. Neuroimaging studies report brain abnormalities in both white and gray matter structures. However, the relationship between microstructural white matter differences and volumetric subcortical structures is not known. We investigated 30 long-term treated patients with schizophrenia and schizoaffective disorder (mean age 51.1 ± 7.9 years, mean illness duration 27.6 ± 8.0 years) and 42 healthy controls (mean age 54.1 ± 9.1 years) using 3 T diffusion and structural magnetic resonance imaging. The free-water imaging method was used to model the diffusion signal, and subcortical volumes were obtained from FreeSurfer. We applied multiple linear regression to investigate associations between (i) patient status and regional white matter microstructure, (ii) medication dose or clinical symptoms on white matter microstructure in patients, and (iii) for interactions between subcortical volumes and diagnosis on microstructural white matter regions showing significant patient-control differences. The patients had significantly decreased free-water corrected fractional anisotropy (FA), explained by decreased axial diffusivity and increased radial diffusivity (RD) bilaterally in the anterior corona radiata (ACR) and the left anterior limb of the internal capsule (ALIC) compared to controls. In the fornix, the patients had significantly increased RD. In patients, positive symptoms were associated with localized increased free-water and negative symptoms with localized decreased FA and increased RD. There were significant interactions between patient status and several subcortical structures on white matter microstructure and the free-water compartment for left ACR and fornix, and limited to the free-water compartment for right ACR and left ALIC. The Cohen’s d effect sizes were medium to large (0.61 to 1.20, absolute values). The results suggest a specific pattern of frontal white matter axonal degeneration and demyelination and fornix demyelination that is attenuated in the presence of larger structures of the limbic system in patients with chronic schizophrenia and schizoaffective disorder. Findings warrant replication in larger samples.