Publications by Year: 2015

2015

Liu S, Cai W, Liu S, Zhang F, Fulham M, Feng D, Pujol S, Kikinis R. Multimodal Neuroimaging Computing: The Workflows, Methods, and Platforms. Brain Inform. 2015;2(3):181–95. doi:10.1007/s40708-015-0020-4
The last two decades have witnessed the explosive growth in the development and use of noninvasive neuroimaging technologies that advance the research on human brain under normal and pathological conditions. Multimodal neuroimaging has become a major driver of current neuroimaging research due to the recognition of the clinical benefits of multimodal data, and the better access to hybrid devices. Multimodal neuroimaging computing is very challenging, and requires sophisticated computing to address the variations in spatiotemporal resolution and merge the biophysical/biochemical information. We review the current workflows and methods for multimodal neuroimaging computing, and also demonstrate how to conduct research using the established neuroimaging computing packages and platforms.
Pascual B, Masdeu JC, Hollenbeck M, Makris N, Insausti R, Ding S-L, Dickerson BC. Large-scale brain networks of the human left temporal pole: a functional connectivity MRI study.. Cereb Cortex. 2015;25(3):680–702. doi:10.1093/cercor/bht260
The most rostral portion of the human temporal cortex, the temporal pole (TP), has been described as "enigmatic" because its functional neuroanatomy remains unclear. Comparative anatomy studies are only partially helpful, because the human TP is larger and cytoarchitectonically more complex than in nonhuman primates. Considered by Brodmann as a single area (BA 38), the human TP has been recently parceled into an array of cytoarchitectonic subfields. In order to clarify the functional connectivity of subregions of the TP, we undertook a study of 172 healthy adults using resting-state functional connectivity MRI. Remarkably, a hierarchical cluster analysis performed to group the seeds into distinct subsystems according to their large-scale functional connectivity grouped 87.5% of the seeds according to the recently described cytoarchitectonic subregions of the TP. Based on large-scale functional connectivity, there appear to be 4 major subregions of the TP: (1) dorsal, with predominant connectivity to auditory/somatosensory and language networks; (2) ventromedial, predominantly connected to visual networks; (3) medial, connected to paralimbic structures; and (4) anterolateral, connected to the default-semantic network. The functional connectivity of the human TP, far more complex than its known anatomic connectivity in monkey, is concordant with its hypothesized role as a cortical convergence zone.
Mirzaalian H, de Pierrefeu A, Savadjiev P, Pasternak O, Bouix S, Kubicki M, Westin C-F, Shenton ME, Rathi Y. Harmonizing Diffusion MRI Data Across Multiple Sites and Scanners.. Med Image Comput Comput Assist Interv. 2015;9349:12–19. doi:10.1007/978-3-319-24553-9_2
Harmonizing diffusion MRI (dMRI) images across multiple sites is imperative for joint analysis of the data to significantly increase the sample size and statistical power of neuroimaging studies. In this work, we develop a method to harmonize diffusion MRI data across multiple sites and scanners that incorporates two main novelties: i) we take into account the spatial variability of the signal (for different sites) in different parts of the brain as opposed to existing methods, which consider one linear statistical covariate for the entire brain; ii) our method is model-free, in that no a-priori model of diffusion (e.g., tensor, compartmental models, etc.) is assumed and the signal itself is corrected for scanner related differences. We use spherical harmonic basis functions to represent the signal and compute several rotation invariant features, which are used to estimate a regionally specific linear mapping between signal from different sites (and scanners). We validate our method on diffusion data acquired from four different sites (including two GE and two Siemens scanners) on a group of healthy subjects. Diffusion measures such fractional anisotropy, mean diffusivity and generalized fractional anisotropy are compared across multiple sites before and after the mapping. Our experimental results demonstrate that, for identical acquisition protocol across sites, scanner-specific differences can be accurately removed using the proposed method.
Liu S, Cai W, Liu S, Zhang F, Fulham M, Feng D, Pujol S, Kikinis R. Multimodal Neuroimaging Computing: A Review of the Applications in Neuropsychiatric Disorders. Brain Inform. 2015;2(3):167–80. doi:10.1007/s40708-015-0019-x
Multimodal neuroimaging is increasingly used in neuroscience research, as it overcomes the limitations of individual modalities. One of the most important applications of multimodal neuroimaging is the provision of vital diagnostic data for neuropsychiatric disorders. Multimodal neuroimaging computing enables the visualization and quantitative analysis of the alterations in brain structure and function, and has reshaped how neuroscience research is carried out. Research in this area is growing exponentially, and so it is an appropriate time to review the current and future development of this emerging area. Hence, in this paper, we review the recent advances in multimodal neuroimaging (MRI, PET) and electrophysiological (EEG, MEG) technologies, and their applications to the neuropsychiatric disorders. We also outline some future directions for multimodal neuroimaging where researchers will design more advanced methods and models for neuropsychiatric research.