Publications by Year: 2010

2010

Venkataraman A, Kubicki M, Westin C-F, Golland P. Robust Feature Selection in Resting-State fMRI Connectivity Based on Population Studies.. Conf Comput Vis Pattern Recognit Workshops. 2010:63–70. doi:10.1109/CVPRW.2010.5543446
We propose an alternative to univariate statistics for identifying population differences in functional connectivity. Our feature selection method is based on a procedure that searches across subsets of the data to isolate a set of robust, predictive functional connections. The metric, known as the Gini Importance, also summarizes multivariate patterns of interaction, which cannot be captured by univariate techniques. We compare the Gini Importance with univariate statistical tests to evaluate functional connectivity changes induced by schizophrenia. Our empirical results indicate that univariate features vary dramatically across subsets of the data and have little classification power. In contrast, relevant features based on Gini Importance are considerably more stable and allow us to accurately predict the diagnosis of a test subject.
Washko GR, Martinez FJ, Hoffman EA, Loring SH, epar R ul SJ e E, Diaz AA, Sciurba FC, Silverman EK, Han MK, Decamp M, et al. Physiological and computed tomographic predictors of outcome from lung volume reduction surgery.. Am J Respir Crit Care Med. 2010;181(5):494–500. doi:10.1164/rccm.200906-0911OC
RATIONALE: Previous investigations have identified several potential predictors of outcomes from lung volume reduction surgery (LVRS). A concern regarding these studies has been their small sample size, which may limit generalizability. We therefore sought to examine radiographic and physiologic predictors of surgical outcomes in a large, multicenter clinical investigation, the National Emphysema Treatment Trial. OBJECTIVES: To identify objective radiographic and physiological indices of lung disease that have prognostic value in subjects with chronic obstructive pulmonary disease being evaluated for LVRS. METHODS: A subset of the subjects undergoing LVRS in the National Emphysema Treatment Trial underwent preoperative high-resolution computed tomographic (CT) scanning of the chest and measures of static lung recoil at total lung capacity (SRtlc) and inspiratory resistance (Ri). The relationship between CT measures of emphysema, the ratio of upper to lower zone emphysema, CT measures of airway disease, SRtlc, Ri, the ratio of residual volume to total lung capacity (RV/TLC), and both 6-month postoperative changes in FEV(1) and maximal exercise capacity were assessed.
Matsuoka S, Washko GR, Yamashiro T, Estepar RSJ, Díaz A, Silverman EK, Hoffman E, Fessler HE, Criner GJ, Marchetti N, et al. Pulmonary hypertension and computed tomography measurement of small pulmonary vessels in severe emphysema.. Am J Respir Crit Care Med. 2010;181(3):218–25. doi:10.1164/rccm.200908-1189OC
RATIONALE: Vascular alteration of small pulmonary vessels is one of the characteristic features of pulmonary hypertension in chronic obstructive pulmonary disease. The in vivo relationship between pulmonary hypertension and morphological alteration of the small pulmonary vessels has not been assessed in patients with severe emphysema. OBJECTIVES: We evaluated the correlation of total cross-sectional area of small pulmonary vessels (CSA) assessed on computed tomography (CT) scans with the degree of pulmonary hypertension estimated by right heart catheterization. METHODS: In 79 patients with severe emphysema enrolled in the National Emphysema Treatment Trial (NETT), we measured CSA less than 5 mm(2) (CSA(
Schultz T, Westin C-F, Kindlmann G. Multi-diffusion-tensor fitting via spherical deconvolution: a unifying framework.. Med Image Comput Comput Assist Interv. 2010;13(Pt 1):674–81.
In analyzing diffusion magnetic resonance imaging, multi-tensor models address the limitations of the single diffusion tensor in situations of partial voluming and fiber crossings. However, selection of a suitable number of fibers and numerical difficulties in model fitting have limited their practical use. This paper addresses both problems by making spherical deconvolution part of the fitting process: We demonstrate that with an appropriate kernel, the deconvolution provides a reliable approximative fit that is efficiently refined by a subsequent descent-type optimization. Moreover, deciding on the number of fibers based on the orientation distribution function produces favorable results when compared to the traditional F-Test. Our work demonstrates the benefits of unifying previously divergent lines of work in diffusion image analysis.
an-Vega AT, Westin C-F, andez SA-F. A new methodology for the estimation of fiber populations in the white matter of the brain with the Funk-Radon transform.. Neuroimage. 2010;49(2):1301–15. doi:10.1016/j.neuroimage.2009.09.070
The Funk-Radon Transform (FRT) is a powerful tool for the estimation of fiber populations with High Angular Resolution Diffusion Imaging (HARDI). It is used in Q-Ball imaging (QBI), and other HARDI techniques such as the recent Orientation Probability Density Transform (OPDT), to estimate fiber populations with very few restrictions on the diffusion model. The FRT consists in the integration of the attenuation signal, sampled by the MRI scanner on the unit sphere, along equators orthogonal to the directions of interest. It is easily proved that this calculation is equivalent to the integration of the diffusion propagator along such directions, although a characteristic blurring with a Bessel kernel is introduced. Under a different point of view, the FRT can be seen as an efficient way to compute the angular part of the integral of the attenuation signal in the plane orthogonal to each direction of the diffusion propagator. In this paper, Stoke’s theorem is used to prove that the FRT can in fact be used to compute accurate estimates of the true integrals defining the functions of interest in HARDI, keeping the diffusion model as little restrictive as possible. Varying the assumptions on the attenuation signal, we derive new estimators of fiber orientations, generalizing both Q-Balls and the OPDT. Extensive experiments with both synthetic and real data have been intended to show that the new techniques improve existing ones in many situations.
Shenton ME, Whitford TJ, Kubicki M. Structural neuroimaging in schizophrenia: from methods to insights to treatments.. Dialogues Clin Neurosci. 2010;12(3):317–32.
Historically, Kraepelin speculated that dementia praecox resulted from damage to the cerebral cortex, most notably the frontal and temporal cortices. It is only recently, however, that tools have been available to test this hypothesis. Now, more than a century later, we know that schizophrenia is a brain disorder. This knowledge comes from critical advances in imaging technology—including computerized axial tomography, magnetic resonance imaging, and diffusion imaging—all of which provide an unprecedented view of neuroanatomical structures, in vivo. Here, we review evidence for structural neuroimaging abnormalities, beginning with evidence for focal brain abnormalities, primarily in gray matter, and proceeding to the quest to identify abnormalities in brain systems and circuits by focusing on damage to white matter connections in the brain. We then review future prospects that need to be explored and pursued in order to translate our current knowledge into an understanding of the neurobiology of schizophrenia, which can then be translated into novel treatments.
Rathi Y, Malcolm J, Bouix S, Tannenbaum A, Shenton ME. Affine Registration of label maps in Label Space.. J Comput. 2010;2(4):1–11.
Two key aspects of coupled multi-object shape analysis and atlas generation are the choice of representation and subsequent registration methods used to align the sample set. For example, a typical brain image can be labeled into three structures: grey matter, white matter and cerebrospinal fluid. Many manipulations such as interpolation, transformation, smoothing, or registration need to be performed on these images before they can be used in further analysis. Current techniques for such analysis tend to trade off performance between the two tasks, performing well for one task but developing problems when used for the other. This article proposes to use a representation that is both flexible and well suited for both tasks. We propose to map object labels to vertices of a regular simplex, e.g . the unit interval for two labels, a triangle for three labels, a tetrahedron for four labels, etc. This representation, which is routinely used in fuzzy classification, is ideally suited for representing and registering multiple shapes. On closer examination, this representation reveals several desirable properties: algebraic operations may be done directly, label uncertainty is expressed as a weighted mixture of labels (probabilistic interpretation), interpolation is unbiased toward any label or the background, and registration may be performed directly. We demonstrate these properties by using label space in a gradient descent based registration scheme to obtain a probabilistic atlas. While straightforward, this iterative method is very slow, could get stuck in local minima, and depends heavily on the initial conditions. To address these issues, two fast methods are proposed which serve as coarse registration schemes following which the iterative descent method can be used to refine the results. Further, we derive an analytical formulation for direct computation of the "group mean" from the parameters of pairwise registration of all the images in the sample set. We show results on richly labeled 2D and 3D data sets.
Levitt JJ, Kubicki M, Nestor PG, Ersner-Hershfield H, Westin C-F, Alvarado JL, Kikinis R, Jolesz FA, McCarley RW, Shenton ME. A diffusion tensor imaging study of the anterior limb of the internal capsule in schizophrenia.. Psychiatry Res. 2010;184(3):143–50. doi:10.1016/j.pscychresns.2010.08.004
Frontal-subcortical cognitive and limbic feedback loops modulate higher cognitive functioning. The final step in these feedback loops is the thalamo-cortical projection through the anterior limb of the internal capsule (AL-IC). Using diffusion tensor imaging (DTI), we evaluated abnormalities in the AL-IC fiber tract in schizophrenia. Participants comprised 16 chronic schizophrenia patients and 19 male, normal controls, who were group matched for handedness, age, and parental socioeconomic status, and underwent DTI on a 1.5 Tesla GE system. We measured the diffusion indices, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD), and manually segmented, based on FA maps, AL-IC volume, normalized for intracranial contents (ICC). The results showed a significant reduction in the ICC-corrected volume of the AL-IC in schizophrenia, but did not show diffusion measure group differences in the AL-IC in FA, MD, RD or AD. In addition, in the schizophrenia patients, AL-IC FA correlated positively with performance on measures of spatial and verbal declarative/episodic memory, and right AL-IC ICC-corrected volume correlated positively with more perseverative responses on the Wisconsin Card Sort Test (WCST). We found a reduction in AL-IC ICC-corrected volume in schizophrenia, without FA, MD, RD or AD group differences, implicating the presence of a structural abnormality in schizophrenia in this subcortical white matter region which contains important cognitive, and limbic feedback pathways that modulate prefrontal cortical function. Despite not demonstrating a group difference in FA, we found that AL-IC FA was a good predictor of spatial and verbal declarative/episodic memory performance in schizophrenia.
Nowacka A, Mohr PC, Norrman J, Martin RW, Topgaard D. Polarization transfer solid-state NMR for studying surfactant phase behavior.. Langmuir. 2010;26(22):16848–56. doi:10.1021/la102935t
The phase behavior of amphiphiles, e.g., lipids and surfactants, at low water content is of great interest for many technical and pharmaceutical applications. When put in contact with air having a moderate relative humidity, amphiphiles often exhibit coexistence between solid and liquid crystalline phases, making their complete characterization difficult. This study describes a (13)C solid-state NMR technique for the investigation of amphiphile phase behavior in the water-poor regime. While the (13)C chemical shift is an indicator of molecular conformation, the (13)C signal intensities obtained with the CP and INEPT polarization transfer schemes yield information on molecular dynamics. A theoretical analysis incorporating the effect of molecular segment reorientation, with the correlation time τ(c) and order parameter S, shows that INEPT is most efficient for mobile segments with τ(c) 0.01 μs and S 0.05, while CP yields maximal signal for rigid segments with τ(c) > 10 μs and/or S > 0.5 under typical solid-state NMR experimental conditions. For liquid crystalline phases, where τ(c) 0.01 μs and 0 S 0.3, the observed CP and INEPT intensities serve as a gauge of S. The combination of information on molecular conformation and dynamics permits facile phase diagram determination for systems with solid crystalline, solid amorphous, anisotropic liquid crystalline, and isotropic liquid (crystalline) phases as demonstrated by experiments on a series of reference systems with known phase structure. Three solid phases (anhydrous crystal, dihydrate, gel), two anisotropic liquid crystalline phases (normal hexagonal, lamellar), and two isotropic liquid crystalline phases (micellar cubic, bicontinuous cubic) are identified in the temperature-composition phase diagram of the cetyltrimethylammonium succinate/water system. Replacing the succinate counterion with DNA prevents the formation of phases other than hexagonal and leads to a general increase of τ(c).
andez-Esparrach F, epar SJ e E, Guarner-Argente C, i M \inez-P \, Navarro R, de Miguel R \iguez, ordova HC, Thompson C, Lacy A, Donoso L, et al. The role of a computed tomography-based image registered navigation system for natural orifice transluminal endoscopic surgery: a comparative study in a porcine model.. Endoscopy. 2010;42(12):1096–103. doi:10.1055/s-0030-1255824
BACKGROUND AND STUDY AIMS: Most natural orifice transluminal endoscopic surgery (NOTES) procedures have been performed in animal models through the anterior stomach wall, but this approach does not provide efficient access to all anatomic areas of interest. Moreover, injury of the adjacent structures has been reported when using a blind access. The aim of the current study was to assess the utility of a CT-based (CT: computed tomography) image registered navigation system in identifying safe gastrointestinal access sites for NOTES and identifying intraperitoneal structures.