Publications by Year: 2009

2009

Nilsson M, Lätt J, Nordh E, Wirestam R, ahlberg FS, Brockstedt S. On the effects of a varied diffusion time in vivo: is the diffusion in white matter restricted?. Magn Reson Imaging. 2009;27(2):176–87. doi:10.1016/j.mri.2008.06.003
The aim of this work was to study the diffusion-related signal attenuation curves (signal-vs.-b curves) measured perpendicular and parallel to the neuronal fibers of the corticospinal tract in vivo and to determine whether effects of restricted diffusion could be observed when varying the diffusion time (T(D)). A biexponential model and a two-compartment model including exchange according to the Kärger formalism were employed to analyze the signal-vs.-b curves. To validate the two-compartment model, restricted diffusion with exchange was simulated for uniformly sized cylinders, using different diameters and exchange times. The model was shown to retrieve the simulated parameters well, also when the short gradient pulse approximation was not met. The in vivo measurements performed perpendicular to the tracts, using b values up to 28000 s/mm(2) and T(D) values between 64 and 256 ms, did not show the effects of restricted diffusion as expected from previous ex vivo studies. The applied two-compartment model yielded an average axonal diameter of about 4 mum and an intracellular exchange time of about 300 ms, but did not fit statistically well to the data. In conclusion, this study indicates that if the diffusion is modeled as two compartments, of which one is restricted, exchange must be included in the model.
Martin-Fernandez M, Mu\~noz-Moreno E, Cammoun L, Thiran J-P, Westin C-F, opez A-L. Sequential anisotropic multichannel Wiener filtering with Rician bias correction applied to 3D regularization of DWI data. Med Image Anal. 2009;13(1):19–35. doi:10.1016/j.media.2008.05.004
It has been shown that the tensor calculation is very sensitive to the presence of noise in the acquired images, yielding to very low quality Diffusion Tensor Images (DTI) data. Recent investigations have shown that the noise present in the Diffusion Weighted Images (DWI) causes bias effects on the DTI data which cannot be corrected if the noise characteristic is not taken into account. One possible solution is to increase the minimum number of acquired measurements (which is 7) to several tens (or even several hundreds). This has the disadvantage of increasing the acquisition time by one (or two) orders of magnitude, making the process inconvenient for a clinical setting. We here proposed a turn-around procedure for which the number of acquisitions is maintained but, the DWI data are filtered prior to determining the DTI. We show a significant reduction on the DTI bias by means of a simple and fast procedure which is based on linear filtering; well-known drawbacks of such filters are circumvented by means of anisotropic neighborhoods and sequential application of the filter itself. Information of the first order probability density function of the raw data, namely, the Rice distribution, is also included. Results are shown both for synthetic and real datasets. Some error measurements are determined in the synthetic experiments, showing how the proposed scheme is able to reduce them. It is worth noting a 50% increase in the linear component for real DTI data, meaning that the bias in the DTI is considerably reduced. A novel fiber smoothness measure is defined to evaluate the resulting tractography for real DWI data. Our findings show that after filtering, fibers are considerably smoother on the average. Execution times are very low as compared to other reported approaches which allows for a real-time implementation.