Publications by Year: 2004

2004

Topgaard D, Pines A. Self-diffusion measurements with chemical shift resolution in inhomogeneous magnetic fields. J Magn Reson. 2004;168(1):31–5. doi:10.1016/j.jmr.2004.01.018
A methodology for chemical shift resolved molecular self-diffusion measurements in time-independent static and radiofrequency field gradients is demonstrated. Diffusion encoding is provided by a stimulated echo sequence with additional z-storage that allows for a change of diffusion time without affecting the relaxation weighting. The signal is acquired stroboscopically between the pulses of a train of adiabatic double passages that induces a z-rotation counteracting the phase spread resulting from precession in the inhomogeneous static field, as demonstrated in recent approaches to the goal of high-resolution "ex situ" NMR. Simulations of the pulse sequence show that the acquired signal results from the desired coherence pathway. Successful demonstrations of the experiment were performed on a mixture of water and isopropanol.
Zou KH, Warfield SK, Bharatha A, Tempany CMC, Kaus MR, Haker SJ, Wells WM, Jolesz FA, Kikinis R. Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol. 2004;11(2):178–89.
RATIONALE AND OBJECTIVES: To examine a statistical validation method based on the spatial overlap between two sets of segmentations of the same anatomy. MATERIALS AND METHODS: The Dice similarity coefficient (DSC) was used as a statistical validation metric to evaluate the performance of both the reproducibility of manual segmentations and the spatial overlap accuracy of automated probabilistic fractional segmentation of MR images, illustrated on two clinical examples. Example 1: 10 consecutive cases of prostate brachytherapy patients underwent both preoperative 1.5T and intraoperative 0.5T MR imaging. For each case, 5 repeated manual segmentations of the prostate peripheral zone were performed separately on preoperative and on intraoperative images. Example 2: A semi-automated probabilistic fractional segmentation algorithm was applied to MR imaging of 9 cases with 3 types of brain tumors. DSC values were computed and logit-transformed values were compared in the mean with the analysis of variance (ANOVA). RESULTS: Example 1: The mean DSCs of 0.883 (range, 0.876-0.893) with 1.5T preoperative MRI and 0.838 (range, 0.819-0.852) with 0.5T intraoperative MRI (P .001) were within and at the margin of the range of good reproducibility, respectively. Example 2: Wide ranges of DSC were observed in brain tumor segmentations: Meningiomas (0.519-0.893), astrocytomas (0.487-0.972), and other mixed gliomas (0.490-0.899). CONCLUSION: The DSC value is a simple and useful summary measure of spatial overlap, which can be applied to studies of reproducibility and accuracy in image segmentation. We observed generally satisfactory but variable validation results in two clinical applications. This metric may be adapted for similar validation tasks.
Zou KH, Wells WM, Kikinis R, Warfield SK. Three validation metrics for automated probabilistic image segmentation of brain tumours. Stat Med. 2004;23(8):1259–82. doi:10.1002/sim.1723
The validity of brain tumour segmentation is an important issue in image processing because it has a direct impact on surgical planning. We examined the segmentation accuracy based on three two-sample validation metrics against the estimated composite latent gold standard, which was derived from several experts’ manual segmentations by an EM algorithm. The distribution functions of the tumour and control pixel data were parametrically assumed to be a mixture of two beta distributions with different shape parameters. We estimated the corresponding receiver operating characteristic curve, Dice similarity coefficient, and mutual information, over all possible decision thresholds. Based on each validation metric, an optimal threshold was then computed via maximization. We illustrated these methods on MR imaging data from nine brain tumour cases of three different tumour types, each consisting of a large number of pixels. The automated segmentation yielded satisfactory accuracy with varied optimal thresholds. The performances of these validation metrics were also investigated via Monte Carlo simulation. Extensions of incorporating spatial correlation structures using a Markov random field model were considered.
Wiegand LC, Warfield SK, Levitt JJ, Hirayasu Y, Salisbury DF, Heckers S, Dickey CC, Kikinis R, Jolesz FA, McCarley RW, et al. Prefrontal cortical thickness in first-episode psychosis: a magnetic resonance imaging study. Biol Psychiatry. 2004;55(2):131–40.
BACKGROUND: Findings from postmortem studies suggest reduced prefrontal cortical thickness in schizophrenia; however, cortical thickness in first-episode schizophrenia has not been evaluated using magnetic resonance imaging (MRI).
Schreyer AG, Fürst A, Agha A, Kikinis R, Scheibl K, Schölmerich J, Feuerbach S, Herfarth H, Seitz J. Magnetic resonance imaging based colonography for diagnosis and assessment of diverticulosis and diverticulitis. Int J Colorectal Dis. 2004;19(5):474–80. doi:10.1007/s00384-004-0587-3
BACKGROUND AND AIMS: MRI-based colonography is a new minimally invasive imaging modality to assess the colon and abdomen. This new method which is applied mainly for polyp screening could be an integrative approach for colonic diverticulitis assessment. This study evaluated the feasibility of MRI-based colonography to assess diverticulosis or diverticulitis. PATIENTS AND METHODS: Fourteen consecutive patients with clinically suspected diverticulitis were examined by MRI colonography on a 1.5-T scanner. All patients underwent abdominal CT as gold standard. N-Butyl-scopalamin was given intravenously to reduce bowel peristalsis. After rectal administration of a T1-positive enema T1- and T2-weighted acquisitions with additional intravenous contrast were obtained. A 3D FLASH sequence was acquired for virtual colonography. The results were compared with CT and biological parameters such as white blood cell count and C-reactive protein. RESULTS: Of 56 bowel segments (sigmoid colon, descending colon, transverse colon, ascending colon) in all 14 patients 54 were assessed to have good to fair image quality. Having CT as standard of reference, all sigmoid diverticula were diagnosed based on MRI. Inflammation as judged by CT was identically assessed on MRI. 3D models of the colon revealed further diverticula in the remaining colon; additionally, the 3D models gave a comprehensive image for surgical planning. CONCLUSION: In our preliminary study MRI colonography revealed the same diagnosis as CT in all patients without ionizing radiation. Additionally, 3D-rendered models and virtual colonoscopy can be performed. This comprehensive 3D models could replace presurgical planning barium enema with concurrent assessment of the residual colon.
Kubicki M, Maier SE, Westin C-F, Mamata H, Ersner-Hershfield H, Estepar R, Kikinis R, Jolesz FA, McCarley RW, Shenton ME. Comparison of single-shot echo-planar and line scan protocols for diffusion tensor imaging. Acad Radiol. 2004;11(2):224–32.
RATIONALE AND OBJECTIVES: Both single-shot diffusion-weighted echo-planar imaging (EPI) and line scan diffusion imaging (LSDI) can be used to obtain magnetic resonance diffusion tensor data and to calculate directionally invariant diffusion anisotropy indices, ie, indirect measures of the organization and coherence of white matter fibers in the brain. To date, there has been no comparison of EPI and LSDI. Because EPI is the most commonly used technique for acquiring diffusion tensor data, it is important to understand the limitations and advantages of LSDI relative to EPI. MATERIALS AND METHODS: Five healthy volunteers underwent EPI and LSDI diffusion on a 1.5 Tesla magnet (General Electric Medical Systems, Milwaukee, WI). Four-mm thick coronal sections, covering the entire brain, were obtained. In addition, one subject was tested with both sequences over four sessions. For each image voxel, eigenvectors and eigenvalues of the diffusion tensor were calculated, and fractional anisotropy (FA) was derived. Several regions of interest were delineated, and for each, mean FA and estimated mean standard deviation were calculated and compared. RESULTS: Results showed no significant differences between EPI and LSDI for mean FA for the five subjects. When intersession reproducibility for one subject was evaluated, there was a significant difference between EPI and LSDI in FA for the corpus callosum and the right uncinate fasciculus. Moreover, errors associated with each FA measure were larger for EPI than for LSDI. CONCLUSION: Results indicate that both EPI- and LSDI-derived FA measures are sufficiently robust. However, when higher accuracy is needed, LSDI provides smaller error and smaller inter-subject and inter-session variability than EPI.
May FS, Chen C, Gilbertson MW, Shenton ME, Pitman RK. Cavum septum pellucidum in monozygotic twins discordant for combat exposure: relationship to posttraumatic stress disorder. Biol Psychiatry. 2004;55(6):656–8. doi:10.1016/j.biopsych.2003.09.018
BACKGROUND: Abnormally large cavum septum pellucidum has been reported in posttraumatic stress disorder; however, the origin of this association is uncertain. METHODS: We utilized magnetic resonance imaging to measure cavum septum pellucidum in pairs of identical twins discordant for combat exposure in Vietnam. RESULTS: Presence of abnormal cavum septum pellucidum was significantly correlated between exposed and unexposed twins, indicating that it is partially determined by heredity and/or shared environment. There was a greater proportion of cavum septum pellucidum in combat-exposed twins with posttraumatic stress disorder and their noncombat-exposed co-twins. CONCLUSIONS: The presence of abnormally large cavum septum pellucidum is a familial vulnerability factor for posttraumatic stress disorder.
Fischl B, Salat DH, van der Kouwe A e JW, Makris N, egonne FS, Quinn BT, Dale AM. Sequence-independent segmentation of magnetic resonance images. Neuroimage. 2004;23 Suppl 1:69–84. doi:10.1016/j.neuroimage.2004.07.016
We present a set of techniques for embedding the physics of the imaging process that generates a class of magnetic resonance images (MRIs) into a segmentation or registration algorithm. This results in substantial invariance to acquisition parameters, as the effect of these parameters on the contrast properties of various brain structures is explicitly modeled in the segmentation. In addition, the integration of image acquisition with tissue classification allows the derivation of sequences that are optimal for segmentation purposes. Another benefit of these procedures is the generation of probabilistic models of the intrinsic tissue parameters that cause MR contrast (e.g., T1, proton density, T2*), allowing access to these physiologically relevant parameters that may change with disease or demographic, resulting in nonmorphometric alterations in MR images that are otherwise difficult to detect. Finally, we also present a high band width multiecho FLASH pulse sequence that results in high signal-to-noise ratio with minimal image distortion due to B0 effects. This sequence has the added benefit of allowing the explicit estimation of T2* and of reducing test-retest intensity variability.
e LDF, Hodge SM, Makris N, Kennedy DN, Caviness VS, McGrath L, Steele S, Ziegler DA, Herbert MR, Frazier JA, et al. Language-association cortex asymmetry in autism and specific language impairment. Ann Neurol. 2004;56(6):757–66. doi:10.1002/ana.20275
Language deficits are among the core impairments of autism. We previously reported asymmetry reversal of frontal language cortex in boys with autism. Specific language impairment (SLI) and autism share similar language deficits and may share genetic links. This study evaluated asymmetry of frontal language cortex in a new, independent sample of right-handed boys, including a new sample of boys with autism and a group of boys with SLI. The boys with autism were divided into those with language impairment (ALI) and those with normal language ability (ALN). Subjects (right-handed, aged 6.2-13.4 years) included 22 boys with autism (16 ALI and 6 ALN), 9 boys with a history of or present SLI, and 11 normal controls. MRI brain scans were segmented into grey and white matter; then the cerebral cortex was parcellated into 48 gyral-based divisions per hemisphere. Group differences in volumetric asymmetry were predicted a priori in language-related regions in inferior lateral frontal (Broca’s area) and posterior superior temporal cortex. Language impaired boys with autism and SLI both had significant reversal of asymmetry in frontal language-related cortex; larger on the right side in both groups of language impaired boys and larger on the left in both unimpaired language groups, strengthening a phenotypic link between ALI and SLI. Thus, we replicated the observation of reversed asymmetry in frontal language cortex reported previously in an independent autism sample, and observed similar reversal in boys with SLI, further strengthening a phenotypic link between SLI and a subgroup of autism. Linguistically unimpaired boys with autism had similar asymmetry compared with the control group, suggesting that Broca’s area asymmetry reversal is related more to language impairment than specifically to autism diagnosis.
Makris N, Gasic GP, Seidman LJ, Goldstein JM, Gastfriend DR, Elman I, Albaugh MD, Hodge SM, Ziegler DA, Sheahan FS, et al. Decreased absolute amygdala volume in cocaine addicts. Neuron. 2004;44(4):729–40. doi:10.1016/j.neuron.2004.10.027
The amygdala is instrumental to a set of brain processes that lead to cocaine consumption, including those that mediate reward and drug craving. This study examined the volumes of the amygdala and hippocampus in cocaine-addicted subjects and matched healthy controls and determined that the amygdala but not the hippocampus was significantly reduced in volume. The right-left amygdala asymmetry in control subjects was absent in the cocaine addicts. Topological analysis of amygdala isosurfaces (population averages) revealed that the isosurface of the cocaine-dependent group undercut the anterior and superior surfaces of the control group, implicating a difference in the corticomedial and basolateral nuclei. In cocaine addicts, amygdala volume did not correlate with any measure of cocaine use. The amygdala symmetry coefficient did correlate with baseline but not cocaine-primed craving. These findings argue for a condition that predisposes the individual to cocaine dependence by affecting the amygdala, or a primary event early in the course of cocaine use.