Computational morphometry in schizophrenia and related disorders
With this project we want to develop, evaluate and apply novel computational tools for the purpose of understanding morphometric changes in neuroanatomical structures related to schizophrenia. Shape measures are of interest in schizophrenia because this disorder is viewed by some as a neurodevelopmental in origin and because there is evidence to suggest that during morphogenesis of the brain, abnormal pressures and/or tissue formations likely change the shape of brain structures, particularly those in the midline of the brain, as well as influencing folding patterns of the neocortex. We believe that computational morphometry tools are critical to characterize and to quantify shape changes accurately. In fact, neuroscience research as a whole has shown a growing interest in computer assisted shape studies for numerous conditions including, but not limited to, normal neurodevelopment, Alzheimer's disease, schizophrenia and schizotypal personality disorder (SPD), bipolar disorder, psychotic affective disorder, and fetal alcohol exposure.