Publications

2013

Makris N, Swaab DF, van der Kouwe A, Abbs B, Boriel D, Handa RJ, Tobet S, Goldstein JM. Volumetric parcellation methodology of the human hypothalamus in neuroimaging: normative data and sex differences.. Neuroimage. 2013;69:1–10. doi:10.1016/j.neuroimage.2012.12.008
There is increasing evidence regarding the importance of the hypothalamus for understanding sex differences in relation to neurological, psychiatric, endocrine and sleep disorders. Although different in histology, physiology, connections and function, multiple hypothalamic nuclei subserve non-voluntary functions and are nodal points for the purpose of maintaining homeostasis of the organism. Thus, given the critical importance of hypothalamic nuclei and their key multiple roles in regulating basic functions, it is important to develop the ability to conduct in vivo human studies of anatomic structure, volume, connectivity, and function of hypothalamic regions represented at the level of its nuclei. The goals of the present study were to develop a novel method of semi-automated volumetric parcellation for the human hypothalamus that could be used to investigate clinical conditions using MRI and to demonstrate its applicability. The proposed new method subdivides the hypothalamus into five parcels based on visible anatomic landmarks associated with specific nuclear groupings and was confirmed using two ex vivo hypothalami that were imaged in a 7 T (7 T) scanner and processed histologically. Imaging results were compared with histology from the same brain. Further, the method was applied to 44 healthy adults (26 men; 18 women, comparable on age, handedness, ethnicity, SES) to derive normative volumes and assess sex differences in hypothalamic regions using 1.5 T MRI. Men compared to women had a significantly larger total hypothalamus, relative to cerebrum size, similar for both hemispheres, a difference that was primarily driven by the tuberal region, with the sex effect size being largest in the superior tuberal region and, to a lesser extent, inferior tuberal region. Given the critical role of hypothalamic nuclei in multiple chronic diseases and the importance of sex differences, we argue that the use of the novel methodology presented here will allow for critical investigations of these disorders and further delineation of potential treatments, particularly sex-specific approaches to gene and drug discoveries that involve hypothalamic nuclei.
Hansel NN, Washko GR, Foreman MG, Han MK, Hoffman EA, DeMeo DL, Barr G, van Beek EJR, Kazerooni EA, Wise RA, et al. Racial differences in CT phenotypes in COPD.. COPD. 2013;10(1):20–7. doi:10.3109/15412555.2012.727921
BACKGROUND: Whether African Americans (AA) are more susceptible to COPD than non-Hispanic Whites (NHW) and whether racial differences in disease phenotype exist is controversial. The objective is to determine racial differences in the extent of emphysema and airway remodeling in COPD. METHODS: First, 2,500 subjects enrolled in the COPDGene study were used to evaluate racial differences in quantitative CT (QCT) parameters of% emphysema, air trapping and airway wall thickness. Independent variables studied included race, age, gender, education, BMI, pack-years, smoking status, age at smoking initiation, asthma, previous work in dusty job, CT scanner and center of recruitment.
Nilsson M, van Westen D, ahlberg FS, Sundgren PC, Lätt J. The role of tissue microstructure and water exchange in biophysical modelling of diffusion in white matter.. MAGMA. 2013;26(4):345–70. doi:10.1007/s10334-013-0371-x
Biophysical models that describe the outcome of white matter diffusion MRI experiments have various degrees of complexity. While the simplest models assume equal-sized and parallel axons, more elaborate ones may include distributions of axon diameters and axonal orientation dispersions. These microstructural features can be inferred from diffusion-weighted signal attenuation curves by solving an inverse problem, validated in several Monte Carlo simulation studies. Model development has been paralleled by microscopy studies of the microstructure of excised and fixed nerves, confirming that axon diameter estimates from diffusion measurements agree with those from microscopy. However, results obtained in vivo are less conclusive. For example, the amount of slowly diffusing water is lower than expected, and the diffusion-encoded signal is apparently insensitive to diffusion time variations, contrary to what may be expected. Recent understandings of the resolution limit in diffusion MRI, the rate of water exchange, and the presence of microscopic axonal undulation and axonal orientation dispersions may, however, explain such apparent contradictions. Knowledge of the effects of biophysical mechanisms on water diffusion in tissue can be used to predict the outcome of diffusion tensor imaging (DTI) and of diffusion kurtosis imaging (DKI) studies. Alterations of DTI or DKI parameters found in studies of pathologies such as ischemic stroke can thus be compared with those predicted by modelling. Observations in agreement with the predictions strengthen the credibility of biophysical models; those in disagreement could provide clues of how to improve them. DKI is particularly suited for this purpose; it is performed using higher b-values than DTI, and thus carries more information about the tissue microstructure. The purpose of this review is to provide an update on the current understanding of how various properties of the tissue microstructure and the rate of water exchange between microenvironments are reflected in diffusion MRI measurements. We focus on the use of biophysical models for extracting tissue-specific parameters from data obtained with single PGSE sequences on clinical MRI scanners, but results obtained with animal MRI scanners are also considered. While modelling of white matter is the central theme, experiments on model systems that highlight important aspects of the biophysical models are also reviewed.
Makris N, Preti MG, Asami T, Pelavin P, Campbell B, Papadimitriou GM, Kaiser J, Baselli G, Westin C, Shenton ME, et al. Human middle longitudinal fascicle: variations in patterns of anatomical connections.. Brain Struct Funct. 2013;218(4):951–68. doi:10.1007/s00429-012-0441-2
Based on high-resolution diffusion tensor magnetic resonance imaging (DTI) tractographic analyses in 39 healthy adult subjects, we derived patterns of connections and measures of volume and biophysical parameters, such as fractional anisotropy (FA) for the human middle longitudinal fascicle (MdLF). Compared to previous studies, we found that the cortical connections of the MdLF in humans appear to go beyond the superior temporal (STG) and angular (AG) gyri, extending to the temporal pole (TP), superior parietal lobule (SPL), supramarginal gyrus, precuneus and the occipital lobe (including the cuneus and lateral occipital areas). Importantly, the MdLF showed a striking lateralized pattern with predominant connections between the TP, STG and AG on the left and TP, STG and SPL on the right hemisphere. In light of the results of the present study, and of the known functional role of the cortical areas interconnected by the MdLF, we suggested that this fiber pathway might be related to language, high order auditory association, visuospatial and attention functions.
Bush G, Holmes J, Shin LM, Surman C, Makris N, Mick E, Seidman LJ, Biederman J. Atomoxetine increases fronto-parietal functional MRI activation in attention-deficit/hyperactivity disorder: a pilot study.. Psychiatry Res. 2013;211(1):88–91. doi:10.1016/j.pscychresns.2012.09.004
We hypothesized that atomoxetine (ATMX) would produce similar brain effects in attention-deficit/hyperactivity disorder (ADHD) as those of methylphenidate (MPH). Eleven ADHD adults performed the Multi-Source Interference Task (MSIT) during functional magnetic resonance imaging (fMRI) at baseline and after 6 weeks of ATMX treatment. ATMX was associated with increased fMRI activation of dorsolateral prefrontal cortex, parietal cortex and cerebellum but not dorsal anterior midcingulate cortex (daMCC). These results suggest that ATMX and MPH have similar but not identical brain effects.
Lätt J, Nilsson M, Wirestam R, ahlberg FS, Karlsson N, Johansson M, Sundgren PC, van Westen D. Regional values of diffusional kurtosis estimates in the healthy brain.. J Magn Reson Imaging. 2013;37(3):610–8. doi:10.1002/jmri.23857
PURPOSE: To provide estimates of the diffusional kurtosis in the healthy brain in anatomically defined areas and list these along previously reported values in pathologies.
Choe M-S, Ortiz-Mantilla S, Makris N, Gregas M, Bacic J, Haehn D, Kennedy D, Pienaar R, Caviness VS, Benasich AA, et al. Regional infant brain development: an MRI-based morphometric analysis in 3 to 13 month olds.. Cereb Cortex. 2013;23(9):2100–17. doi:10.1093/cercor/bhs197
Elucidation of infant brain development is a critically important goal given the enduring impact of these early processes on various domains including later cognition and language. Although infants’ whole-brain growth rates have long been available, regional growth rates have not been reported systematically. Accordingly, relatively less is known about the dynamics and organization of typically developing infant brains. Here we report global and regional volumetric growth of cerebrum, cerebellum, and brainstem with gender dimorphism, in 33 cross-sectional scans, over 3 to 13 months, using T1-weighted 3-dimensional spoiled gradient echo images and detailed semi-automated brain segmentation. Except for the midbrain and lateral ventricles, all absolute volumes of brain regions showed significant growth, with 6 different patterns of volumetric change. When normalized to the whole brain, the regional increase was characterized by 5 differential patterns. The putamen, cerebellar hemispheres, and total cerebellum were the only regions that showed positive growth in the normalized brain. Our results show region-specific patterns of volumetric change and contribute to the systematic understanding of infant brain development. This study greatly expands our knowledge of normal development and in future may provide a basis for identifying early deviation above and beyond normative variation that might signal higher risk for neurological disorders.

2012

Savadjiev P, Rathi Y, Bouix S, Verma R, Westin C-F. Multi-scale characterization of white matter tract geometry.. Med Image Comput Comput Assist Interv. 2012;15(Pt 3):34–41.
The geometry of white matter tracts is of increased interest for a variety of neuroscientific investigations, as it is a feature reflective of normal neurodevelopment and disease factors that may affect it. In this paper, we introduce a novel method for computing multi-scale fibre tract shape and geometry based on the differential geometry of curve sets. By measuring the variation of a curve’s tangent vector at a given point in all directions orthogonal to the curve, we obtain a 2D "dispersion distribution function" at that point. That is, we compute a function on the unit circle which describes fibre dispersion, or fanning, along each direction on the circle. Our formulation is then easily incorporated into a continuous scale-space framework. We illustrate our method on different fibre tracts and apply it to a population study on hemispheric lateralization in healthy controls. We conclude with directions for future work.
Koerte IK, Kaufmann D, Hartl E, Bouix S, Pasternak O, Kubicki M, Rauscher A, Li DKB, Dadachanji SB, Taunton JA, et al. A prospective study of physician-observed concussion during a varsity university hockey season: white matter integrity in ice hockey players. Part 3 of 4.. Neurosurg Focus. 2012;33(6):1–7. doi:10.3171/2012.10.FOCUS12303
OBJECT: The aim of this study was to investigate the effect of repetitive head impacts on white matter integrity that were sustained during 1 Canadian Interuniversity Sports (CIS) ice hockey season, using advanced diffusion tensor imaging (DTI). METHODS: Twenty-five male ice hockey players between 20 and 26 years of age (mean age 22.24 ± 1.59 years) participated in this study. Participants underwent pre- and postseason 3-T MRI, including DTI. Group analyses were performed using paired-group tract-based spatial statistics to test for differences between preseason and postseason changes. RESULTS: Tract-based spatial statistics revealed an increase in trace, radial diffusivity (RD), and axial diffusivity (AD) over the course of 1 season. Compared with preseason data, postseason images showed higher trace, AD, and RD values in the right precentral region, the right corona radiata, and the anterior and posterior limb of the internal capsule. These regions involve parts of the corticospinal tract, the corpus callosum, and the superior longitudinal fasciculus. No significant differences were observed between preseason and postseason for fractional anisotropy. CONCLUSIONS: Diffusion tensor imaging revealed changes in white matter diffusivity in male ice hockey players over the course of 1 season. The origin of these findings needs to be elucidated.
Asami T, Bouix S, Whitford TJ, Shenton ME, Salisbury DF, McCarley RW. Longitudinal loss of gray matter volume in patients with first-episode schizophrenia: DARTEL automated analysis and ROI validation.. Neuroimage. 2012;59(2):986–96. doi:10.1016/j.neuroimage.2011.08.066
Region of Interest (ROI) longitudinal studies have detected progressive gray matter (GM) volume reductions in patients with first-episode schizophrenia (FESZ). However, there are only a few longitudinal voxel-based morphometry (VBM) studies, and these have been limited in ability to detect relationships between volume loss and symptoms, perhaps because of methodologic issues. Nor have previous studies compared and validated VBM results with manual Region of Interest (ROI) analysis. In the present VBM study, high-dimensional warping and individualized baseline-rescan templates were used to evaluate longitudinal volume changes within subjects and compared with longitudinal manual ROI analysis on the same subjects. VBM evaluated thirty-three FESZ and thirty-six matched healthy control subjects (HC) at baseline (cross-sectionally) and longitudinally evaluated 21 FESZ and 23 HC after an average of 1.5 years from baseline scans. Correlation analyses detected the relationship between changes in regional GM volumes in FESZ and clinical symptoms derived from the Brief Psychiatric Rating Scale, as well as cognitive function as assessed by the Mini-Mental State Examination. At baseline, patients with FESZ had significantly smaller GM volume compared to HC in some regions including the left superior temporal gyrus (STG). On rescan after 1.5 years, patients showed significant GM volume reductions compared with HC in the left STG including Heschl’s gyrus, and in widespread brain neocortical regions of frontal, parietal, and limbic regions including the cingulate gyrus. FESZ showed an association of positive symptoms and volume loss in temporal (especially STG) and frontal regions, and negative symptoms and volume loss in STG and frontal regions. Worse cognitive function was linked to widespread volume reduction, in frontal, temporal and parietal regions. The validation VBM analyses showed results similar to our previous ROI findings for STG and cingulate gyrus. We conclude FESZ show widespread, progressive GM volume reductions in many brain regions. Importantly, these reductions are directly associated with a worse clinical course. Congruence with ROI analyses suggests the promise of this longitudinal VBM methodology.