Publications

2013

Ferreira TM, Coreta-Gomes F, Ollila OHS, Moreno MJ, Vaz WLC, Topgaard D. Cholesterol and POPC segmental order parameters in lipid membranes: solid state 1H-13C NMR and MD simulation studies.. Phys Chem Chem Phys. 2013;15(6):1976–89. doi:10.1039/c2cp42738a
The concentration of cholesterol in cell membranes affects membrane fluidity and thickness, and might regulate different processes such as the formation of lipid rafts. Since interpreting experimental data from biological membranes is rather intricate, investigations on simple models with biological relevance are necessary to understand the natural systems. We study the effect of cholesterol on the molecular structure of multi-lamellar vesicles (MLVs) composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a phospholipid ubiquitous in cell membranes, with compositions in the range 0-60 mol% cholesterol. Order parameters, |S(CH)|, are experimentally determined by using (1)H-(13)C solid-state nuclear magnetic resonance (NMR) spectroscopy with segmental detail for all parts of both the cholesterol and POPC molecules, namely the ring system and alkyl chain of the sterol, as well as the glycerol backbone, choline headgroup and the sn-1 and sn-2 acyl chains of POPC. With increasing cholesterol concentration the acyl chains gradually adopt a more extended conformation while the orientation and dynamics of the polar groups are rather unaffected. Additionally, we perform classical molecular dynamics simulations on virtual bilayers mimicking the POPC-cholesterol MLVs investigated by NMR. Good agreement between experiments and simulations is found for the cholesterol alignment in the bilayer and for the |S(CH)| profiles of acyl chains below 15 mol% cholesterol. Deviations occur for the choline headgroup and glycerol backbone parts of POPC, as well as for the phospholipid and cholesterol alkyl chains at higher cholesterol concentrations. The unprecedented detail of the NMR data enables a more complete comparison between simulations and experiments on POPC-cholesterol bilayers and may aid in developing more realistic model descriptions of biological membranes.
Nestor PG, Kubicki M, Nakamura M, Niznikiewicz M, Levitt JJ, Shenton ME, McCarley RW. Neuropsychological variability, symptoms, and brain imaging in chronic schizophrenia.. Brain Imaging Behav. 2013;7(1):68–76. doi:10.1007/s11682-012-9193-0
We examined variability in performance on widely-used neuropsychological Wechsler tests of intelligence and memory in a large sample of persons with chronic schizophrenia, a subset of whom had also undergone prior studies of magnetic resonance imaging (MRI) of the orbital frontal cortex (OFC) gray matter and diffusion tensor imaging (DTI) of the cingulum bundle (CB) and the uncinate fasiculus (UF) white matter. In comparison to controls, persons with schizophrenia showed lower scores across neuropsychological tests, with most pronounced drops in processing speed and immediate memory, in relation to oral reading. For patients, greater declines in intelligence and memory each correlated with reduced CB white matter fractional anisotropy and reduced OFC gray matter, respectively. However, only memory decline correlated with severity of negative symptoms. Taken together, these data raise the intriguing question as to whether communication and motivational deficits expressed in negative symptoms may contribute to the relationship of auditory memory decline and OFC volume observed in this patient sample.
Nilsson M, Lätt J, van Westen D, Brockstedt S, Lasič S, ahlberg FS, Topgaard D. Noninvasive mapping of water diffusional exchange in the human brain using filter-exchange imaging.. Magn Reson Med. 2013;69(6):1573–81. doi:10.1002/mrm.24395
We present the first in vivo application of the filter-exchange imaging protocol for diffusion MRI. The protocol allows noninvasive mapping of the rate of water exchange between microenvironments with different self-diffusivities, such as the intracellular and extracellular spaces in tissue. Since diffusional water exchange across the cell membrane is a fundamental process in human physiology and pathophysiology, clinically feasible and noninvasive imaging of the water exchange rate would offer new means to diagnose disease and monitor treatment response in conditions such as cancer and edema. The in vivo use of filter-exchange imaging was demonstrated by studying the brain of five healthy volunteers and one intracranial tumor (meningioma). Apparent exchange rates in white matter range from 0.8±0.08 s(-1) in the internal capsule, to 1.6±0.11 s(-1) for frontal white matter, indicating that low values are associated with high myelination. Solid tumor displayed values of up to 2.9±0.8 s(-1). In white matter, the apparent exchange rate values suggest intra-axonal exchange times in the order of seconds, confirming the slow exchange assumption in the analysis of diffusion MRI data. We propose that filter-exchange imaging could be used clinically to map the water exchange rate in pathologies. Filter-exchange imaging may also be valuable for evaluating novel therapies targeting the function of aquaporins.
Asami T, Saito Y, Whitford TJ, Makris N, Niznikiewicz M, McCarley RW, Shenton ME, Kubicki M. Abnormalities of middle longitudinal fascicle and disorganization in patients with schizophrenia.. Schizophr Res. 2013;143(2-3):253–9. doi:10.1016/j.schres.2012.11.030
INTRODUCTION: The middle longitudinal fascicle (MdLF) is a long association fiber connecting the superior temporal gyrus (STG) and temporal pole with the angular gyrus through the white matter of the STG, structures which are known to play a crucial role in the pathology of schizophrenia. Functions of MdLF are thought to be related to language and thought processing in the left hemisphere, and with attention in the right hemisphere. While deficits of these functions are core clinical features of schizophrenia, no study has investigated the structural abnormalities of MdLF in schizophrenia. METHOD: 3T diffusion tensor data was acquired from twenty-six patients with schizophrenia and twenty-five healthy control subjects. Streamline tractography technique was used to extract MdLF. Fractional anisotropy (FA) was compared between the two groups. In addition, relationships were investigated between FA in the left MdLF and the Disorganized Thoughts Factor derived from the Positive and Negative Symptom Scale five factor model, and between FA in the right MdLF and the Poor Attention. RESULT: Relative to control subjects, the patients with chronic schizophrenia showed significant mean FA reductions in the bilateral MdLF. The FA of the left MdLF demonstrated a significant negative association with the Disorganized Thoughts Factor, and the FA of the right MdLF showed a significant negative relationship with the Poor Attention. CONCLUSIONS: This study provides new evidence for structural deficits in the bilateral MdLF in patients with chronic schizophrenia. It further demonstrates the contribution of these abnormalities to the core clinical features - especially to disorganization and attention deficit.
Iacono MI, Makris N, Mainardi L, Angelone LM, Bonmassar G. MRI-based multiscale model for electromagnetic analysis in the human head with implanted DBS.. Comput Math Methods Med. 2013;2013:694171. doi:10.1155/2013/694171
Deep brain stimulation (DBS) is an established procedure for the treatment of movement and affective disorders. Patients with DBS may benefit from magnetic resonance imaging (MRI) to evaluate injuries or comorbidities. However, the MRI radio-frequency (RF) energy may cause excessive tissue heating particularly near the electrode. This paper studies how the accuracy of numerical modeling of the RF field inside a DBS patient varies with spatial resolution and corresponding anatomical detail of the volume surrounding the electrodes. A multiscale model (MS) was created by an atlas-based segmentation using a 1 mm(3) head model (mRes) refined in the basal ganglia by a 200 μ m(2) ex-vivo dataset. Four DBS electrodes targeting the left globus pallidus internus were modeled. Electromagnetic simulations at 128 MHz showed that the peak of the electric field of the MS doubled (18.7 kV/m versus 9.33 kV/m) and shifted 6.4 mm compared to the mRes model. Additionally, the MS had a sixfold increase over the mRes model in peak-specific absorption rate (SAR of 43.9 kW/kg versus 7 kW/kg). The results suggest that submillimetric resolution and improved anatomical detail in the model may increase the accuracy of computed electric field and local SAR around the tip of the implant.
Spencer TJ, Brown A, Seidman LJ, Valera EM, Makris N, Lomedico A, Faraone S V, Biederman J. Effect of psychostimulants on brain structure and function in ADHD: a qualitative literature review of magnetic resonance imaging-based neuroimaging studies.. J Clin Psychiatry. 2013;74(9):902–17. doi:10.4088/JCP.12r08287
OBJECTIVE: To evaluate the impact of therapeutic oral doses of stimulants on the brains of ADHD subjects as measured by magnetic resonance imaging (MRI)-based neuroimaging studies (morphometric, functional, spectroscopy). DATA SOURCES: We searched PubMed and ScienceDirect through the end of calendar year 2011 using the keywords (1) psychostimulants or methylphenidate or amphetamine, and (2) neuroimaging or MRI or fMRI, and (3) ADHD or ADD or attention-deficit/hyperactivity disorder or attention deficit hyperactivity disorder. STUDY SELECTION: We included only English language articles with new data from case-control or placebo controlled studies that examined attention-deficit/hyperactivity disorder (ADHD) subjects on and off psychostimulants (as well as 5 relevant review articles). DATA EXTRACTION: We combined details of study design and medication effects in each imaging modality. RESULTS: We found 29 published studies that met our criteria. These included 6 structural MRI, 20 functional MRI studies, and 3 spectroscopy studies. Methods varied widely in terms of design, analytic technique, and regions of the brain investigated. Despite heterogeneity in methods, however, results were consistent. With only a few exceptions, the data on the effect of therapeutic oral doses of stimulant medication suggest attenuation of structural and functional alterations found in unmedicated ADHD subjects relative to findings in controls. CONCLUSIONS: Despite the inherent limitations and heterogeneity of the extant MRI literature, our review suggests that therapeutic oral doses of stimulants decrease alterations in brain structure and function in subjects with ADHD relative to unmedicated subjects and controls. These medication-associated brain effects parallel, and may underlie, the well-established clinical benefits.
Nestor PG, Nakamura M, Niznikiewicz M, Thompson E, Levitt JJ, Choate V, Shenton ME, McCarley RW. In search of the functional neuroanatomy of sociality: MRI subdivisions of orbital frontal cortex and social cognition.. Soc Cogn Affect Neurosci. 2013;8(4):460–7. doi:10.1093/scan/nss018
We examined social cognition in a sample of healthy participants who had prior magnetic resonance imaging (MRI) gray matter volume studies of the orbital frontal cortex (OFC) that was parcellated into three regions: gyrus rectus, middle orbital gyrus and lateral orbital gyrus. These subjects also completed a self-report measure of Machiavelli personality traits, along with psychometric tests of social comprehension and declarative episodic memory, all of which we used as proxy measures to examine various features of social cognition. The data pointed to distinct functional-anatomical relationships highlighted by strong correlations of left lateral orbital gyrus and Machiavellian scores and right middle orbital gyrus with social comprehension and declarative episodic memory. In addition, hierarchical regression analyses revealed statistical evidence of a double dissociation between Machiavellian scores and left lateral orbital gyrus on one hand, and social comprehension with right middle orbital gyrus, on the other hand. To our knowledge, these findings are the first to show evidence linking normal variation in OFC subregions and different aspects of social cognition.
Eriksson S, Lasič S, Topgaard D. Isotropic diffusion weighting in PGSE NMR by magic-angle spinning of the q-vector.. J Magn Reson. 2013;226:13–8. doi:10.1016/j.jmr.2012.10.015
When PGSE NMR is applied to water in microheterogeneous materials such as liquid crystals, foodstuffs, porous rocks, and biological tissues, the signal attenuation is often multi-exponential, indicating the presence of pores having a range of sizes or anisotropic domains having a spread of orientations. Here we modify the standard PGSE experiment by introducing low-amplitude harmonically modulated gradients, which effectively make the q-vector perform magic-angle spinning (MAS) about an axis fixed in the laboratory frame. With this new technique, denoted q-MAS PGSE, the signal attenuation depends on the isotropic average of the local diffusion tensor. The capability of q-MAS PGSE to distinguish between pore size and domain orientation dispersion is demonstrated by experiments on a yeast cell suspension and a polydomain anisotropic liquid crystal. In the latter case, the broad distribution of apparent diffusivities observed with PGSE is narrowed to its isotropic average with q-MAS PGSE in a manner that is analogous to the narrowing of chemical shift anisotropy powder patterns using magic-angle sample spinning in solid-state NMR. The new q-MAS PGSE technique could be useful for resolving size/orientation ambiguities in the interpretation of PGSE data from, e.g., water confined within the axons of human brain tissue.
Makris N, Preti MG, Wassermann D, Rathi Y, Papadimitriou GM, Yergatian C, Dickerson BC, Shenton ME, Kubicki M. Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography.. Brain Imaging Behav. 2013;7(3):335–52. doi:10.1007/s11682-013-9235-2
The middle longitudinal fascicle (MdLF) is a major fiber connection running principally between the superior temporal gyrus and the parietal lobe, neocortical regions of great biological and clinical interest. Although one of the most prominent cerebral association fiber tracts, it has only recently been discovered in humans. In this high angular resolution diffusion imaging (HARDI) MRI study, we delineated the two major fiber connections of the human MdLF, by examining morphology, topography, cortical connections, biophysical measures, volume and length in seventy-four brains. These two fiber connections course together through the dorsal temporal pole and the superior temporal gyrus maintaining a characteristic topographic relationship in the mediolateral and ventrodorsal dimensions. As these pathways course towards the parietal lobe, they split to form separate fiber pathways, one following a ventrolateral trajectory and connecting with the angular gyrus and the other following a dorsomedial route and connecting with the superior parietal lobule. Based on the functions of their cortical affiliations, we suggest that the superior temporal-angular connection of the MdLF, i.e., STG(MdLF)AG plays a role in language and attention, whereas the superior temporal-superior parietal connection of the MdLF, i.e., STG(MdLF)SPL is involved in visuospatial and integrative audiovisual functions. Furthermore, the MdLF may have clinical implications in neurodegenerative disorders such as primary progressive aphasia, frontotemporal dementia, posterior cortical atrophy, corticobulbar degeneration and Alzheimer’s disease as well as attention-deficit/hyperactivity disorder and schizophrenia.
Surova Y, Szczepankiewicz F, Lätt J, Nilsson M, Eriksson B, Leemans A, Hansson O, van Westen D, Nilsson C. Assessment of global and regional diffusion changes along white matter tracts in parkinsonian disorders by MR tractography.. PLoS One. 2013;8(6):e66022. doi:10.1371/journal.pone.0066022
PURPOSE: The aim of the study was to determine the usefulness of diffusion tensor tractography (DTT) in parkinsonian disorders using a recently developed method for normalization of diffusion data and tract size along white matter tracts. Furthermore, the use of DTT in selected white matter tracts for differential diagnosis was assessed. METHODS: We quantified global and regional diffusion parameters in major white matter tracts in patients with multiple system atrophy (MSA), progressive nuclear palsy (PSP), idiopathic Parkinson’s disease (IPD) and healthy controls). Diffusion tensor imaging data sets with whole brain coverage were acquired at 3 T using 48 diffusion encoding directions and a voxel size of 2×2×2 mm(3). DTT of the corpus callosum (CC), cingulum (CG), corticospinal tract (CST) and middle cerebellar peduncles (MCP) was performed using multiple regions of interest. Regional evaluation comprised projection of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and the apparent area coefficient (AAC) onto a calculated mean tract and extraction of their values along each structure. RESULTS: There were significant changes of global DTT parameters in the CST (MSA and PSP), CC (PSP) and CG (PSP). Consistent tract-specific variations in DTT parameters could be seen along each tract in the different patient groups and controls. Regional analysis demonstrated significant changes in the anterior CC (MD, RD and FA), CST (MD) and CG (AAC) of patients with PSP compared to controls. Increased MD in CC and CST, as well as decreased AAC in CG, was correlated with a diagnosis of PSP compared to IPD. CONCLUSIONS: DTT can be used for demonstrating disease-specific regional white matter changes in parkinsonian disorders. The anterior portion of the CC was identified as a promising region for detection of neurodegenerative changes in patients with PSP, as well as for differential diagnosis between PSP and IPD.