Publications

2021

Seitz-Holland J, Cetin-Karayumak S, Wojcik JD, Lyall A, Levitt J, Shenton ME, Pasternak O, Westin C-F, Baxi M, Kelly S, et al. Elucidating the Relationship Between White Matter Structure, Demographic, and Clinical Variables in Schizophrenia-A Multicenter Harmonized Diffusion Tensor Imaging Study. Mol Psychiatry. 2021;26(9):5357–70. doi:10.1038/s41380-021-01018-z
White matter (WM) abnormalities are repeatedly demonstrated across the schizophrenia time-course. However, our understanding of how demographic and clinical variables interact, influence, or are dependent on WM pathologies is limited. The most well-known barriers to progress are heterogeneous findings due to small sample sizes and the confounding influence of age on WM. The present study leverages access to the harmonized diffusion magnetic-resonance-imaging data and standardized clinical data from 13 international sites (597 schizophrenia patients (SCZ)). Fractional anisotropy (FA) values for all major WM structures in patients were predicted based on FA models estimated from a healthy population (n = 492). We utilized the deviations between predicted and real FA values to answer three essential questions. (1) "Which clinical variables explain WM abnormalities?". (2) "Does the degree of WM abnormalities predict symptom severity?". (3) "Does sex influence any of those relationships?". Regression and mediator analyses revealed that a longer duration-of-illness is associated with more severe WM abnormalities in several tracts. In addition, they demonstrated that a higher antipsychotic medication dose is related to more severe corpus callosum abnormalities. A structural equation model revealed that patients with more WM abnormalities display higher symptom severity. Last, the results exhibited sex-specificity. Males showed a stronger association between duration-of-illness and WM abnormalities. Females presented a stronger association between WM abnormalities and symptom severity, with IQ impacting this relationship. Our findings provide clear evidence for the interaction of demographic, clinical, and behavioral variables with WM pathology in SCZ. Our results also point to the need for longitudinal studies, directly investigating the casualty and sex-specificity of these relationships, as well as the impact of cognitive resiliency on structure-function relationships.
Lyall AE, Nägele FL, Pasternak O, Gallego JA, Malhotra AK, McNamara RK, Kubicki M, Peters BD, Robinson DG, Szeszko PR. A 16-week randomized placebo-controlled trial investigating the effects of omega-3 polyunsaturated fatty acid treatment on white matter microstructure in recent-onset psychosis patients concurrently treated with risperidone. Psychiatry Res Neuroimaging. 2021;307:111219. doi:10.1016/j.pscychresns.2020.111219
We examined the impact of treatment with fish oil (FO), a rich source of omega-3 polyunsaturated fatty acids (n-3 PUFA), on white matter in 37 recent-onset psychosis patients receiving risperidone in a double-blind placebo-controlled randomized clinical trial. Patients were scanned at baseline and randomly assigned to receive 16-weeks of treatment with risperidone + FO or risperidone + placebo. Eighteen patients received follow-up MRIs (FO, n = 10/Placebo, n = 8). Erythrocyte levels of n-3 PUFAs eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and docosapentaenoic acid (DPA) were obtained at both time points. We employed Free Water Imaging metrics representing the extracellular free water fraction (FW) and fractional anisotropy of the tissue (FA-t). Analyses were conducted using Tract-Based-Spatial-Statistics and nonparametric permutation-based tests with family-wise error correction. There were significant positive correlations of FA-t with DHA and DPA among all patients at baseline. Patients treated with risperidone + placebo demonstrated reductions in FA-t and increases in FW, whereas patients treated with risperidone + FO exhibited no significant changes in FW and FA-t reductions were largely attenuated. The correlations of DPA and DHA with baseline FA-t support the hypothesis that n-3 PUFA intake or biosynthesis are associated with white matter abnormalities in psychosis. Adjuvant FO treatment may partially mitigate against white matter alterations observed in recent-onset psychosis patients following risperidone treatment.
on-Lara R-M \ia M, Royuela-Del-Val J, Simmross-Wattenberg F, Casaseca-de-la-Higuera P, andez MM \in-F, opez CA-L. Fast 4D elastic group-wise image registration. Convolutional interpolation revisited. Comput Methods Programs Biomed. 2021;200:105812. doi:10.1016/j.cmpb.2020.105812
BACKGROUND AND OBJECTIVE: This paper proposes a new and highly efficient implementation of 3D+t groupwise registration based on the free-form deformation paradigm. METHODS: Deformation is posed as a cascade of 1D convolutions, achieving great reduction in execution time for evaluation of transformations and gradients. RESULTS: The proposed method has been applied to 4D cardiac MRI and 4D thoracic CT monomodal datasets. Results show an average runtime reduction above 90%, both in CPU and GPU executions, compared with the classical tensor product formulation. CONCLUSIONS: Our implementation, although fully developed for the metric sum of squared differences, can be extended to other metrics and its adaptation to multiresolution strategies is straightforward. Therefore, it can be extremely useful to speed up image registration procedures in different applications where high dimensional data are involved.
Szczepankiewicz F, Westin C-F, Nilsson M. Gradient waveform design for tensor-valued encoding in diffusion MRI. J Neurosci Methods. 2021;348:109007. doi:10.1016/j.jneumeth.2020.109007
Diffusion encoding along multiple spatial directions per signal acquisition can be described in terms of a b-tensor. The benefit of tensor-valued diffusion encoding is that it unlocks the ’shape of the b-tensor’ as a new encoding dimension. By modulating the b-tensor shape, we can control the sensitivity to microscopic diffusion anisotropy which can be used as a contrast mechanism; a feature that is inaccessible by conventional diffusion encoding. Since imaging methods based on tensor-valued diffusion encoding are finding an increasing number of applications we are prompted to highlight the challenge of designing the optimal gradient waveforms for any given application. In this review, we first establish the basic design objectives in creating field gradient waveforms for tensor-valued diffusion MRI. We also survey additional design considerations related to limitations imposed by hardware and physiology, potential confounding effects that cannot be captured by the b-tensor, and artifacts related to the diffusion encoding waveform. Throughout, we discuss the expected compromises and tradeoffs with an aim to establish a more complete understanding of gradient waveform design and its impact on accurate measurements and interpretations of data.
Geisler M, Rizzoni E, Makris N, Pasternak O, Rathi Y, Bouix S, Herbsleb M, Bär K-J, Weiss T, Kikinis Z. Microstructural alterations in medial forebrain bundle are associated with interindividual pain sensitivity. Hum Brain Mapp. 2021;42(4):1130–7. doi:10.1002/hbm.25281
The perception of pain to noxious stimuli, also known as pain sensitivity, varies among individuals. The comprised brain structures and their white matter pathways are complex and elusive. Here, we aimed to investigate whether variation of microstructure of the medial forebrain bundle (MFB), a tract connecting the basal forebrain with the brain stem, is associated with interindividual pain sensitivity. We assessed interindividual pain sensitivity as a rating of pain intensity to heat stimuli (45, 47, and 48.9°C) in 38 healthy men (age: 27.05 ± 5.7 years). We also reconstructed the MFB using multitensor tractography from diffusion magnetic resonance imaging (dMRI) and calculated free-water corrected dMRI measures of fractional anisotropy (FA ), radial diffusivity (RD ), and axial diffusivity (AD ). Lower ratings of interindividual pain intensity correlated with higher FA and lower RD of the MFB. As changes in FA and RD may reflect abnormalities in myelination, the results might be interpreted as that a lower pain rating is associated with higher degree of myelination of the MFB and could represent an inhibitory pathway of pain. Our results suggest that alteration of microstructure in the MFB contributes to the interindividual variation of pain perception.
Szczepankiewicz F, Sjölund J, Dall\textquoterightArmellina E, Plein S, Schneider JE, Teh I, Westin C-F. Motion-compensated gradient waveforms for tensor-valued diffusion encoding by constrained numerical optimization. Magn Reson Med. 2021;85(4):2117–2126. doi:10.1002/mrm.28551
PURPOSE: Diffusion-weighted MRI is sensitive to incoherent tissue motion, which may confound the measured signal and subsequent analysis. We propose a "motion-compensated" gradient waveform design for tensor-valued diffusion encoding that negates the effects bulk motion and incoherent motion in the ballistic regime. METHODS: Motion compensation was achieved by constraining the magnitude of gradient waveform moment vectors. The constraint was incorporated into a numerical optimization framework, along with existing constraints that account for b-tensor shape, hardware restrictions, and concomitant field gradients. We evaluated the efficacy of encoding and motion compensation in simulations, and we demonstrated the approach by linear and planar b-tensor encoding in a healthy heart in vivo. RESULTS: The optimization framework produced asymmetric motion-compensated waveforms that yielded b-tensors of arbitrary shape with improved efficiency compared with previous designs for tensor-valued encoding, and equivalent efficiency to previous designs for linear (conventional) encoding. Technical feasibility was demonstrated in the heart in vivo, showing vastly improved data quality when using motion compensation. The optimization framework is available online in open source. CONCLUSION: Our gradient waveform design is both more flexible and efficient than previous methods, facilitating tensor-valued diffusion encoding in tissues in which motion would otherwise confound the signal. The proposed design exploits asymmetric encoding times, a single refocusing pulse or multiple refocusing pulses, and integrates compensation for concomitant gradient effects throughout the imaging volume.
Afzali M, Pieciak T, Newman S, Garyfallidis E, Özarslan E, Cheng H, Jones DK. The sensitivity of diffusion MRI to microstructural properties and experimental factors. J Neurosci Methods. 2021;347:108951. doi:10.1016/j.jneumeth.2020.108951
Diffusion MRI is a non-invasive technique to study brain microstructure. Differences in the microstructural properties of tissue, including size and anisotropy, can be represented in the signal if the appropriate method of acquisition is used. However, to depict the underlying properties, special care must be taken when designing the acquisition protocol as any changes in the procedure might impact on quantitative measurements. This work reviews state-of-the-art methods for studying brain microstructure using diffusion MRI and their sensitivity to microstructural differences and various experimental factors. Microstructural properties of the tissue at a micrometer scale can be linked to the diffusion signal at a millimeter-scale using modeling. In this paper, we first give an introduction to diffusion MRI and different encoding schemes. Then, signal representation-based methods and multi-compartment models are explained briefly. The sensitivity of the diffusion MRI signal to the microstructural components and the effects of curvedness of axonal trajectories on the diffusion signal are reviewed. Factors that impact on the quality (accuracy and precision) of derived metrics are then reviewed, including the impact of random noise, and variations in the acquisition parameters (i.e., number of sampled signals, b-value and number of acquisition shells). Finally, yet importantly, typical approaches to deal with experimental factors are depicted, including unbiased measures and harmonization. We conclude the review with some future directions and recommendations on this topic.
Tsintou M, Dalamagkas K, Moore TL, Rathi Y, Kubicki M, Rosene DL, Makris N. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches. Neural Regen Res. 2021;16(4):605–613. doi:10.4103/1673-5374.295269
Neural tissue engineering, nanotechnology and neuroregeneration are diverse biomedical disciplines that have been working together in recent decades to solve the complex problems linked to central nervous system (CNS) repair. It is known that the CNS demonstrates a very limited regenerative capacity because of a microenvironment that impedes effective regenerative processes, making development of CNS therapeutics challenging. Given the high prevalence of CNS conditions such as stroke that damage the brain and place a severe burden on afflicted individuals and on society, it is of utmost significance to explore the optimum methodologies for finding treatments that could be applied to humans for restoration of function to pre-injury levels. Extracellular vesicles (EVs), also known as exosomes, when derived from mesenchymal stem cells, are one of the most promising approaches that have been attempted thus far, as EVs deliver factors that stimulate recovery by acting at the nanoscale level on intercellular communication while avoiding the risks linked to stem cell transplantation. At the same time, advances in tissue engineering and regenerative medicine have offered the potential of using hydrogels as bio-scaffolds in order to provide the stroma required for neural repair to occur, as well as the release of biomolecules facilitating or inducing the reparative processes. This review introduces a novel experimental hypothesis regarding the benefits that could be offered if EVs were to be combined with biocompatible injectable hydrogels. The rationale behind this hypothesis is presented, analyzing how a hydrogel might prolong the retention of EVs and maximize the localized benefit to the brain. This sustained delivery of EVs would be coupled with essential guidance cues and structural support from the hydrogel until neural tissue remodeling and regeneration occur. Finally, the importance of including non-human primate models in the clinical translation pipeline, as well as the added benefit of multi-modal neuroimaging analysis to establish non-invasive, in vivo, quantifiable imaging-based biomarkers for CNS repair are discussed, aiming for more effective and safe clinical translation of such regenerative therapies to humans.
Di Biase MA, Zalesky A, Cetin-Karayumak S, Rathi Y, Lv J, Boerrigter D, North H, Tooney P, Pantelis C, Pasternak O, et al. Large-Scale Evidence for an Association Between Peripheral Inflammation and White Matter Free Water in Schizophrenia and Healthy Individuals. Schizophr Bull. 2021;47(2):542–51. doi:10.1093/schbul/sbaa134
INTRODUCTION: Clarifying the role of neuroinflammation in schizophrenia is subject to its detection in the living brain. Free-water (FW) imaging is an in vivo diffusion-weighted magnetic resonance imaging (dMRI) technique that measures water molecules freely diffusing in the brain and is hypothesized to detect inflammatory processes. Here, we aimed to establish a link between peripheral markers of inflammation and FW in brain white matter. METHODS: All data were obtained from the Australian Schizophrenia Research Bank (ASRB) across 5 Australian states and territories. We first tested for the presence of peripheral cytokine deregulation in schizophrenia, using a large sample (N = 1143) comprising the ASRB. We next determined the extent to which individual variation in 8 circulating pro-/anti-inflammatory cytokines related to FW in brain white matter, imaged in a subset (n = 308) of patients and controls. RESULTS: Patients with schizophrenia showed reduced interleukin-2 (IL-2) (t = -3.56, P = .0004) and IL-12(p70) (t = -2.84, P = .005) and increased IL-6 (t = 3.56, P = .0004), IL-8 (t = 3.8, P = .0002), and TNFα (t = 4.30, P < .0001). Higher proinflammatory signaling of IL-6 (t = 3.4, P = .0007) and TNFα (t = 2.7, P = .0007) was associated with higher FW levels in white matter. The reciprocal increases in serum cytokines and FW were spatially widespread in patients encompassing most major fibers; conversely, in controls, the relationship was confined to the anterior corpus callosum and thalamic radiations. No relationships were observed with alternative dMRI measures, including the fractional anisotropy and tissue-related FA. CONCLUSIONS: We report widespread deregulation of cytokines in schizophrenia and identify inflammation as a putative mechanism underlying increases in brain FW levels.
Seitz J, Cetin-Karayumak S, Lyall A, Pasternak O, Baxi M, Vangel M, Pearlson G, Tamminga C, Sweeney J, Clementz B, et al. Investigating Sexual Dimorphism of Human White Matter in a Harmonized, Multisite Diffusion Magnetic Resonance Imaging Study. Cereb Cortex. 2021;31(1):201–212. doi:10.1093/cercor/bhaa220
Axonal myelination and repair, critical processes for brain development, maturation, and aging, remain controlled by sexual hormones. Whether this influence is reflected in structural brain differences between sexes, and whether it can be quantified by neuroimaging, remains controversial. Diffusion-weighted magnetic resonance imaging (dMRI) is an in vivo method that can track myelination changes throughout the lifespan. We utilize a large, multisite sample of harmonized dMRI data (n = 551, age = 9-65 years, 46% females/54% males) to investigate the influence of sex on white matter (WM) structure. We model lifespan trajectories of WM using the most common dMRI measure fractional anisotropy (FA). Next, we examine the influence of both age and sex on FA variability. We estimate the overlap between male and female FA and test whether it is possible to label individual brains as male or female. Our results demonstrate regionally and spatially specific effects of sex. Sex differences are limited to limbic structures and young ages. Additionally, not only do sex differences diminish with age, but tracts within each subject become more similar to one another. Last, we show the high overlap in FA between sexes, which implies that determining sex based on WM remains open.