Publications

2009

Özarslan E. Compartment shape anisotropy (CSA) revealed by double pulsed field gradient MR.. J Magn Reson. 2009;199(1):56–67. doi:10.1016/j.jmr.2009.04.002
The multiple scattering extensions of the pulsed field gradient (PFG) experiments can be used to characterize restriction-induced anisotropy at different length scales. In double-PFG acquisitions that involve two pairs of diffusion gradient pulses, the dependence of the MR signal attenuation on the angle between the two gradients is a signature of restriction that can be observed even at low gradient strengths. In this article, a comprehensive theoretical treatment of the double-PFG observation of restricted diffusion is presented. In the first part of the article, the problem is treated for arbitrarily shaped pores under idealized experimental conditions, comprising infinitesimally narrow gradient pulses with long separation times and long or vanishing mixing times. New insights are obtained when the treatment is applied to simple pore shapes of spheres, ellipsoids, and capped cylinders. The capped cylinder geometry is considered in the second part of the article where the solution for a double-PFG experiment with arbitrary experimental parameters is introduced. Although compartment shape anisotropy (CSA) is emphasized here, the findings of this article can be used in gleaning the volume, eccentricity, and orientation distribution function associated with ensembles of anisotropic compartments using double-PFG acquisitions with arbitrary experimental parameters.
Based on a description introduced by Robertson, Grebenkov recently introduced a powerful formalism to represent the diffusion-attenuated NMR signal for simple pore geometries such as slabs, cylinders, and spheres analytically. In this work, we extend this multiple correlation function formalism by allowing for possible variations in the direction of the magnetic field gradient waveform. This extension is necessary, for example, to incorporate the effects of imaging gradients in diffusion-weighted NMR imaging scans and in characterizing anisotropy at different length scales via double pulsed field gradient (PFG) experiments. In cylindrical and spherical pores, respectively, two- and three-dimensional vector operators are employed whose form is deduced from Grebenkov’s results via elementary operator algebra for the case of cylinders and the Wigner-Eckart theorem for the case of spheres. The theory was validated by comparison with known findings and with experimental double-PFG data obtained from water-filled microcapillaries.
Shemesh N, Özarslan E, Basser PJ, Cohen Y. Measuring small compartmental dimensions with low-q angular double-PGSE NMR: The effect of experimental parameters on signal decay.. J Magn Reson. 2009;198(1):15–23. doi:10.1016/j.jmr.2009.01.004
In confined geometries, the MR signal attenuation obtained from single pulsed gradient spin echo (s-PGSE) experiments reflects the dimension of the compartment, and in some cases, its geometry. However, to measure compartment size, high q-values must be applied, requiring high gradient strengths and/or long pulse durations and diffusion times. The angular double PGSE (d-PGSE) experiment has been proposed as a means to extract dimensions of confined geometries using low q-values. In one realization of the d-PGSE experiment, the first gradient pair is fixed along the x-axis, and the orientation of the second gradient pair is varied in the X-Y plane. Such a measurement is sensitive to microscopic anisotropy induced by the boundaries of the restricting compartment, and allows extraction of the compartment dimension. In this study, we have juxtaposed angular d-PGSE experiments and simulations to extract sizes from well-characterized NMR phantoms consisting of water filled microcapillaries. We are able to accurately extract sizes of small compartments (5mum) using the angular d-PGSE experiment even when the short gradient pulse (SGP) approximation is violated and over a range of mixing and diffusion times. We conclude that the angular d-PGSE experiment may fill an important niche in characterizing compartment sizes in which restricted diffusion occurs.
Peled S, Whalen S, Jolesz FA, Golby AJ. High b-value apparent diffusion-weighted images from CURVE-ball DTI.. J Magn Reson Imaging. 2009;30(1):243–8. doi:10.1002/jmri.21808
PURPOSE: To investigate the utility of a proposed clinical diffusion imaging scheme for rapidly generating multiple b-value diffusion contrast in brain magnetic resonance imaging (MRI) with high signal-to-noise ratio (SNR). MATERIALS AND METHODS: Our strategy for efficient image acquisition relies on the invariance property of the diffusion tensor eigenvectors to b-value. A simple addition to the conventional diffusion tensor MR imaging (DTI) data acquisition scheme used for tractography yields diffusion-weighted images at twice and three times the conventional b-value. An example from a neurosurgical brain tumor is shown. Apparent diffusion-weighted (ADW) images were calculated for b-values 800, 1600, and 2400 s/mm(2), and a map of excess diffusive kurtosis was computed from the three ADWs. RESULTS: High b-value ADW images demonstrated decreased contrast between normal gray and white matter, while the heterogeneity and contrast of the lesion was emphasized relative to conventional b-value data. Kurtosis maps indicated the deviation from Gaussian diffusive behavior. CONCLUSION: DTI data with multiple b-values and good SNR can be acquired in clinically reasonable times. High b-value ADW images show increased contrast and add information to conventional DWI. Ambiguity in conventional b-value images over whether hyperintense signal results from abnormally low diffusion, or abnormally long T(2), is better resolved in high b-value images.
Mezer A, Yovel Y, Pasternak O, Gorfine T, Assaf Y. Cluster analysis of resting-state fMRI time series.. Neuroimage. 2009;45(4):1117–25. doi:10.1016/j.neuroimage.2008.12.015
Functional MRI (fMRI) has become one of the leading methods for brain mapping in neuroscience. Recent advances in fMRI analysis were used to define the default state of brain activity, functional connectivity and basal activity. Basal activity measured with fMRI raised tremendous interest among neuroscientists since synchronized brain activity pattern could be retrieved while the subject rests (resting state fMRI). During recent years, a few signal processing schemes have been suggested to analyze the resting state blood oxygenation level dependent (BOLD) signal from simple correlations to spectral decomposition. In most of these analysis schemes, the question asked was which brain areas "behave" in the time domain similarly to a pre-specified ROI. In this work we applied short time frequency analysis and clustering to study the spatial signal characteristics of resting state fMRI time series. Such analysis revealed that clusters of similar BOLD fluctuations are found in the cortex but also in the white matter and sub-cortical gray matter regions (thalamus). We found high similarities between the BOLD clusters and the neuro-anatomical appearance of brain regions. Additional analysis of the BOLD time series revealed a strong correlation between head movements and clustering quality. Experiments performed with T1-weighted time series also provided similar quality of clustering. These observations led us to the conclusion that non-functional contributions to the BOLD time series can also account for symmetric appearance of signal fluctuations. These contributions may include head motions, the underling microvasculature anatomy and cellular morphology.
Stein D, Neufeld A, Pasternak O, Graif M, Patish H, Schwimmer E, Ziv E, Assaf Y. Diffusion tensor imaging of the median nerve in healthy and carpal tunnel syndrome subjects.. J Magn Reson Imaging. 2009;29(3):657–62. doi:10.1002/jmri.21553
PURPOSE: To determine if diffusion tensor imaging (DTI) of the median nerve could allow identification of patients with carpal tunnel syndrome (CTS). MATERIALS AND METHODS: A total of 13 healthy subjects and 9 CTS patients were scanned on a 3T magnetic resonance imaging (MRI) scanner. The MRI protocol included a DTI sequence from which the fractional anisotropy (FA), apparent diffusion coefficient (ADC), and the parallel and radial diffusivities could be extracted. Those parameters were quantified at different locations along the median nerve (proximal to the carpal tunnel, within the carpal tunnel, and distal to the carpal tunnel). RESULTS: At the carpal tunnel, the FA, radial diffusivity, and ADC differed significantly between healthy subjects and CTS patients (P
epar R ul SJ e E, Westin C-F, Vosburgh KG. Towards real time 2D to 3D registration for ultrasound-guided endoscopic and laparoscopic procedures.. Int J Comput Assist Radiol Surg. 2009;4(6):549–60. doi:10.1007/s11548-009-0369-z
PURPOSE: A method to register endoscopic and laparoscopic ultrasound (US) images in real time with pre-operative computed tomography (CT) data sets has been developed with the goal of improving diagnosis, biopsy guidance, and surgical interventions in the abdomen. METHODS: The technique, which has the potential to operate in real time, is based on a new phase correlation technique: LEPART, which specifies the location of a plane in the CT data which best corresponds to the US image. Validation of the method was carried out using an US phantom with cyst regions and with retrospective analysis of data sets from animal model experiments. RESULTS: The phantom validation study shows that local translation displacements can be recovered for each US frame with a root mean squared error of 1.56 +/- 0.78 mm in less than 5 sec, using non-optimized algorithm implementations. CONCLUSION: A new method for multimodality (preoperative CT and intraoperative US endoscopic images) registration to guide endoscopic interventions was developed and found to be efficient using clinically realistic datasets. The algorithm is inherently capable of being implemented in a parallel computing system so that full real time operation appears likely.
Ross JC, epar R ul SJ e E, iaz AD \, Westin C-F, Kikinis R, Silverman EK, Washko GR. Lung extraction, lobe segmentation and hierarchical region assessment for quantitative analysis on high resolution computed tomography images.. Med Image Comput Comput Assist Interv. 2009;12(Pt 2):690–8.
Regional assessment of lung disease (such as chronic obstructive pulmonary disease) is a critical component to accurate patient diagnosis. Software tools than enable such analysis are also important for clinical research studies. In this work, we present an image segmentation and data representation framework that enables quantitative analysis specific to different lung regions on high resolution computed tomography (HRCT) datasets. We present an offline, fully automatic image processing chain that generates airway, vessel, and lung mask segmentations in which the left and right lung are delineated. We describe a novel lung lobe segmentation tool that produces reproducible results with minimal user interaction. A usability study performed across twenty datasets (inspiratory and expiratory exams including a range of disease states) demonstrates the tool’s ability to generate results within five to seven minutes on average. We also describe a data representation scheme that involves compact encoding of label maps such that both "regions" (such as lung lobes) and "types" (such as emphysematous parenchyma) can be simultaneously represented at a given location in the HRCT.
Malcolm JG, Shenton ME, Rathi Y. Neural tractography using an unscented Kalman filter.. Inf Process Med Imaging. 2009;21:126–38.
We describe a technique to simultaneously estimate a local neural fiber model and trace out its path. Existing techniques estimate the local fiber orientation at each voxel independently so there is no running knowledge of confidence in the estimated fiber model. We formulate fiber tracking as recursive estimation: at each step of tracing the fiber, the current estimate is guided by the previous. To do this we model the signal as a mixture of Gaussian tensors and perform tractography within a filter framework. Starting from a seed point, each fiber is traced to its termination using an unscented Kalman filter to simultaneously fit the local model and propagate in the most consistent direction. Despite the presence of noise and uncertainty, this provides a causal estimate of the local structure at each point along the fiber. Synthetic experiments demonstrate that this approach reduces signal reconstruction error and significantly improves the angular resolution at crossings and branchings. In vivo experiments confirm the ability to trace out fibers in areas known to contain such crossing and branching while providing inherent path regularization.
Malcolm JG, Shenton ME, Rathi Y. Two-tensor tractography using a constrained filter.. Med Image Comput Comput Assist Interv. 2009;12(Pt 1):894–902.
We describe a technique to simultaneously estimate a weighted, positive-definite multi-tensor fiber model and perform tractography. Existing techniques estimate the local fiber orientation at each voxel independently so there is no running knowledge of confidence in the estimated fiber model. We formulate fiber tracking as recursive estimation: at each step of tracing the fiber, the current estimate is guided by the previous. To do this we model the signal as a weighted mixture of Gaussian tensors and perform tractography within a filter framework. Starting from a seed point, each fiber is traced to its termination using an unscented Kalman filter to simultaneously fit the local model and propagate in the most consistent direction. Further, we modify the Kalman filter to enforce model constraints, i.e. positive eigenvalues and convex weights. Despite the presence of noise and uncertainty, this provides a causal estimate of the local structure at each point along the fiber. Synthetic experiments demonstrate that this approach significantly improves the angular resolution at crossings and branchings while consistently estimating the mixture weights. In vivo experiments confirm the ability to trace out fibers in areas known to contain such crossing and branching while providing inherent path regularization.