Publications

2016

Bergamino M, Pasternak O, Farmer M, Shenton ME, Hamilton P. Applying a free-water correction to diffusion imaging data uncovers stress-related neural pathology in depression.. Neuroimage Clin. 2016;10:336–42. doi:10.1016/j.nicl.2015.11.020
Diffusion tensor imaging (DTI) holds promise for developing our understanding of white-matter pathology in major depressive disorder (MDD). Variable findings in DTI-based investigations of MDD, however, have thwarted development of this literature. Effects of extra-cellular free-water on the sensitivity of DTI metrics could account for some of this inconsistency. Here we investigated whether applying a free-water correction algorithm to DTI data could improve the sensitivity to detect clinical effects using DTI metrics. Only after applying this correction, we found: a) significantly decreased fractional anisotropy and axial diffusivity (AD) in the left inferior fronto-occipital fasciculus (IFOF) in MDD; and b) increased self-reported stress that significantly correlated with decreased IFOF AD in depression. We estimated and confirmed the robustness of differences observed between free-water corrected and uncorrected approaches using bootstrapping. We conclude that applying a free-water correction to DTI data increases the sensitivity of DTI-based metrics to detect clinical effects in MDD.
Thermenos HW, Juelich RJ, DiChiara SR, Mesholam-Gately RI, Woodberry KA, Wojcik J, Makris N, Keshavan MS, Whitfield-Gabrieli S, Woo T-UW, et al. Hyperactivity of caudate, parahippocampal, and prefrontal regions during working memory in never-medicated persons at clinical high-risk for psychosis.. Schizophr Res. 2016;173(1-2):1–12. doi:10.1016/j.schres.2016.02.023
BACKGROUND: Deficits in working memory (WM) are a core feature of schizophrenia (SZ) and other psychotic disorders. We examined brain activity during WM in persons at clinical high risk (CHR) for psychosis.
Topgaard D. Director orientations in lyotropic liquid crystals: diffusion MRI mapping of the Saupe order tensor.. Phys Chem Chem Phys. 2016;18(12):8545–53. doi:10.1039/c5cp07251d
The macroscopic physical properties of a liquid crystalline material depend on both the properties of the individual crystallites and the details of their spatial arrangement. We propose a diffusion MRI method to estimate the director orientations of a lyotropic liquid crystal as a spatially resolved field of Saupe order tensors. The method relies on varying the shape of the diffusion-encoding tensor to disentangle the effects of voxel-scale director orientational order and the local diffusion anisotropy of the solvent. Proof-of-concept experiments are performed on water in lamellar and reverse hexagonal liquid crystalline systems with intricate patterns of director orientations.
Kumamaru KK, George E, Aghayev A, Saboo SS, Khandelwal A, opez SR \iguez-L, Cai T, enez-Carretero DJ, epar R ul SJ e E, Ledesma-Carbayo MJ, et al. Implementation and Performance of Automated Software for Computing Right-to-Left Ventricular Diameter Ratio From Computed Tomography Pulmonary Angiography Images.. J Comput Assist Tomogr. 2016;40(3):387–92. doi:10.1097/RCT.0000000000000375
OBJECTIVE: The aim of this study was to prospectively test the performance and potential for clinical integration of software that automatically calculates the right-to-left ventricular (RV/LV) diameter ratio from computed tomography pulmonary angiography images. METHODS: Using 115 computed tomography pulmonary angiography images that were positive for acute pulmonary embolism, we prospectively evaluated RV/LV ratio measurements that were obtained as follows: (1) completely manual measurement (reference standard), (2) completely automated measurement using the software, and (3 and 4) using a customized software interface that allowed 2 independent radiologists to manually adjust the automatically positioned calipers.
Demetriou A, Makris N, Pnevmatikos D. Mind God’s mind: History, development, and teaching.. Behav Brain Sci. 2016;39:e10. doi:10.1017/S0140525X15000400
We dispute the target article that belief in Big Gods facilitated development of large societies and suggest that the direction of causality might be inverted. We also suggest that plain theory of mind (ToM), although necessary, is not sufficient to conceive Big Gods. Grasp of other aspects of the mind is required. However, this theory is useful for the teaching of religion.
Ahlgren A e, Knutsson L, Wirestam R, Nilsson M, ahlberg FS, Topgaard D, Lasič S. Quantification of microcirculatory parameters by joint analysis of flow-compensated and non-flow-compensated intravoxel incoherent motion (IVIM) data.. NMR Biomed. 2016;29(5):640–9. doi:10.1002/nbm.3505
The aim of this study was to improve the accuracy and precision of perfusion fraction and blood velocity dispersion estimates in intravoxel incoherent motion (IVIM) imaging, using joint analysis of flow-compensated and non-flow-compensated motion-encoded MRI data. A double diffusion encoding sequence capable of switching between flow-compensated and non-flow-compensated encoding modes was implemented. In vivo brain data were collected in eight healthy volunteers and processed using the joint analysis. Simulations were used to compare the performance of the proposed analysis method with conventional IVIM analysis. With flow compensation, strong rephasing was observed for the in vivo data, approximately cancelling the IVIM effect. The joint analysis yielded physiologically reasonable perfusion fraction maps. Estimated perfusion fractions were 2.43 ± 0.81% in gray matter, 1.81 ± 0.90% in deep gray matter, and 1.64 ± 0.72% in white matter (mean ± SD, n = 8). Simulations showed improved accuracy and precision when using joint analysis of flow-compensated and non-flow-compensated data, compared with conventional IVIM analysis. Double diffusion encoding with flow compensation was feasible for in vivo imaging of the perfusion fraction in the brain. The strong rephasing implied that blood flowing through the cerebral microvascular system was closer to the ballistic limit than the diffusive limit.
Lasič S, Oredsson S, Partridge SC, Saal LH, Topgaard D, Nilsson M, Bryskhe K. Apparent exchange rate for breast cancer characterization.. NMR Biomed. 2016;29(5):631–9. doi:10.1002/nbm.3504
Although diffusion MRI has shown promise for the characterization of breast cancer, it has low specificity to malignant subtypes. Higher specificity might be achieved if the effects of cell morphology and molecular exchange across cell membranes could be disentangled. The quantification of exchange might thus allow the differentiation of different types of breast cancer cells. Based on differences in diffusion rates between the intra- and extracellular compartments, filter exchange spectroscopy/imaging (FEXSY/FEXI) provides non-invasive quantification of the apparent exchange rate (AXR) of water between the two compartments. To test the feasibility of FEXSY for the differentiation of different breast cancer cells, we performed experiments on several breast epithelial cell lines in vitro. Furthermore, we performed the first in vivo FEXI measurement of water exchange in human breast. In cell suspensions, pulsed gradient spin-echo experiments with large b values and variable pulse duration allow the characterization of the intracellular compartment, whereas FEXSY provides a quantification of AXR. These experiments are very sensitive to the physiological state of cells and can be used to establish reliable protocols for the culture and harvesting of cells. Our results suggest that different breast cancer subtypes can be distinguished on the basis of their AXR values in cell suspensions. Time-resolved measurements allow the monitoring of the physiological state of cells in suspensions over the time-scale of hours, and reveal an abrupt disintegration of the intracellular compartment. In vivo, exchange can be detected in a tumor, whereas, in normal tissue, the exchange rate is outside the range experimentally accessible for FEXI. At present, low signal-to-noise ratio and limited scan time allows the quantification of AXR only in a region of interest of relatively large tumors.
Putman RK, Hatabu H, Araki T, Gudmundsson G, Gao W, Nishino M, Okajima Y, Dupuis J ee, Latourelle JC, Cho MH, et al. Association Between Interstitial Lung Abnormalities and All-Cause Mortality.. JAMA. 2016;315(7):672–81. doi:10.1001/jama.2016.0518
IMPORTANCE: Interstitial lung abnormalities have been associated with lower 6-minute walk distance, diffusion capacity for carbon monoxide, and total lung capacity. However, to our knowledge, an association with mortality has not been previously investigated. OBJECTIVE: To investigate whether interstitial lung abnormalities are associated with increased mortality. DESIGN, SETTING, AND POPULATION: Prospective cohort studies of 2633 participants from the FHS (Framingham Heart Study; computed tomographic [CT] scans obtained September 2008-March 2011), 5320 from the AGES-Reykjavik Study (Age Gene/Environment Susceptibility; recruited January 2002-February 2006), 2068 from the COPDGene Study (Chronic Obstructive Pulmonary Disease; recruited November 2007-April 2010), and 1670 from ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints; between December 2005-December 2006). EXPOSURES: Interstitial lung abnormality status as determined by chest CT evaluation. MAIN OUTCOMES AND MEASURES: All-cause mortality over an approximate 3- to 9-year median follow-up time. Cause-of-death information was also examined in the AGES-Reykjavik cohort.
Liu S, Cai W, Pujol S, Kikinis R, Feng DD. Cross-View Neuroimage Pattern Analysis in Alzheimer’s Disease Staging.. Front Aging Neurosci. 2016;8:23. doi:10.3389/fnagi.2016.00023
The research on staging of pre-symptomatic and prodromal phase of neurological disorders, e.g., Alzheimer’s disease (AD), is essential for prevention of dementia. New strategies for AD staging with a focus on early detection, are demanded to optimize potential efficacy of disease-modifying therapies that can halt or slow the disease progression. Recently, neuroimaging are increasingly used as additional research-based markers to detect AD onset and predict conversion of MCI and normal control (NC) to AD. Researchers have proposed a variety of neuroimaging biomarkers to characterize the patterns of the pathology of AD and MCI, and suggested that multi-view neuroimaging biomarkers could lead to better performance than single-view biomarkers in AD staging. However, it is still unclear what leads to such synergy and how to preserve or maximize. In an attempt to answer these questions, we proposed a cross-view pattern analysis framework for investigating the synergy between different neuroimaging biomarkers. We quantitatively analyzed nine types of biomarkers derived from FDG-PET and T1-MRI, and evaluated their performance in a task of classifying AD, MCI, and NC subjects obtained from the ADNI baseline cohort. The experiment results showed that these biomarkers could depict the pathology of AD from different perspectives, and output distinct patterns that are significantly associated with the disease progression. Most importantly, we found that these features could be separated into clusters, each depicting a particular aspect; and the inter-cluster features could always achieve better performance than the intra-cluster features in AD staging.
Chen Z, Tie Y, Olubiyi O, Zhang F, Mehrtash A, Rigolo L, Kahali P, Norton I, Pasternak O, Rathi Y, et al. Corticospinal tract modeling for neurosurgical planning by tracking through regions of peritumoral edema and crossing fibers using two-tensor unscented Kalman filter tractography.. Int J Comput Assist Radiol Surg. 2016;11(8):1475–86. doi:10.1007/s11548-015-1344-5
PURPOSE: The aim of this study was to present a tractography algorithm using a two-tensor unscented Kalman filter (UKF) to improve the modeling of the corticospinal tract (CST) by tracking through regions of peritumoral edema and crossing fibers. METHODS: Ten patients with brain tumors in the vicinity of motor cortex and evidence of significant peritumoral edema were retrospectively selected for the study. All patients underwent 3-T magnetic resonance imaging (MRI) including functional MRI (fMRI) and a diffusion-weighted data set with 31 directions. Fiber tracking was performed using both single-tensor streamline and two-tensor UKF tractography methods. A two-region-of-interest approach was used to delineate the CST. Results from the two tractography methods were compared visually and quantitatively. fMRI was applied to identify the functional fiber tracts. RESULTS: Single-tensor streamline tractography underestimated the extent of tracts running through the edematous areas and could only track the medial projections of the CST. In contrast, two-tensor UKF tractography tracked fanning projections of the CST despite peritumoral edema and crossing fibers. Based on visual inspection, the two-tensor UKF tractography delineated tracts that were closer to motor fMRI activations, and it was apparently more sensitive than single-tensor streamline tractography to define the tracts directed to the motor sites. The volume of the CST was significantly larger on two-tensor UKF than on single-tensor streamline tractography ([Formula: see text]). CONCLUSION: Two-tensor UKF tractography tracks a larger volume CST than single-tensor streamline tractography in the setting of peritumoral edema and crossing fibers in brain tumor patients.