Publications

2017

Viher PV, Stegmayer K, Kubicki M, Karmacharya S, Lyall AE, Federspiel A, Vanbellingen T, Bohlhalter S, Wiest R, Strik W, et al. The Cortical Signature of Impaired Gesturing: Findings from Schizophrenia. Neuroimage Clin. 2017;17:213–21. doi:10.1016/j.nicl.2017.10.017
Schizophrenia is characterized by deficits in gesturing that is important for nonverbal communication. Research in healthy participants and brain-damaged patients revealed a left-lateralized fronto-parieto-temporal network underlying gesture performance. First evidence from structural imaging studies in schizophrenia corroborates these results. However, as of yet, it is unclear if cortical thickness abnormalities contribute to impairments in gesture performance. We hypothesized that patients with deficits in gesture production show cortical thinning in 12 regions of interest (ROIs) of a gesture network relevant for gesture performance and recognition. Forty patients with schizophrenia and 41 healthy controls performed hand and finger gestures as either imitation or pantomime. Group differences in cortical thickness between patients with deficits, patients without deficits, and controls were explored using a multivariate analysis of covariance. In addition, the relationship between gesture recognition and cortical thickness was investigated. Patients with deficits in gesture production had reduced cortical thickness in eight ROIs, including the pars opercularis of the inferior frontal gyrus, the superior and inferior parietal lobes, and the superior and middle temporal gyri. Gesture recognition correlated with cortical thickness in fewer, but mainly the same, ROIs within the patient sample. In conclusion, our results show that impaired gesture production and recognition in schizophrenia is associated with cortical thinning in distinct areas of the gesture network.
Klein O, Roded A, Zur N, Azouz NP, Pasternak O, Hirschberg K, Hammel I, Roche PA, Yatsu A, Fukuda M, et al. Rab5 is critical for SNAP23 regulated granule-granule fusion during compound exocytosis. Sci Rep. 2017;7(1):15315. doi:10.1038/s41598-017-15047-8
Compound exocytosis is considered the most massive mode of exocytosis, during which the membranes of secretory granules (SGs) fuse with each other to form a channel through which the entire contents of their granules is released. The underlying mechanisms of compound exocytosis remain largely unresolved. Here we show that the small GTPase Rab5, a known regulator of endocytosis, is pivotal for compound exocytosis in mast cells. Silencing of Rab5 shifts receptor-triggered secretion from a compound to a full exocytosis mode, in which SGs individually fuse with the plasma membrane. Moreover, we show that Rab5 is essential for FcεRI-triggered association of the SNARE protein SNAP23 with the SGs. Direct evidence is provided for SNAP23 involvement in homotypic SG fusion that occurs in the activated cells. Finally, we show that this fusion event is prevented by inhibition of the IKKβ2 kinase, however, neither a phosphorylation-deficient nor a phosphomimetic mutant of SNAP23 can mediate homotypic SG fusion in triggered cells. Taken together our findings identify Rab5 as a heretofore-unrecognized regulator of compound exocytosis that is essential for SNAP23-mediated granule-granule fusion. Our results also implicate phosphorylation cycles in controlling SNAP23 SNARE function in homotypic SG fusion.
Kaufmann L-K, Baur V, Hänggi J, Jäncke L, Piccirelli M, Kollias S, Schnyder U, Pasternak O, Martin-Soelch C, Milos G. Fornix Under Water? Ventricular Enlargement Biases Forniceal Diffusion Magnetic Resonance Imaging Indices in Anorexia Nervosa. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(5):430–437. doi:10.1016/j.bpsc.2017.03.014
BACKGROUND: Acute anorexia nervosa (AN) is characterized by reduced brain mass and corresponding increased sulcal and ventricular cerebrospinal fluid. Recent studies of white matter using diffusion tensor imaging consistently identified alterations in the fornix, such as reduced fractional anisotropy (FA). However, because the fornix penetrates the ventricles, it is prone to cerebrospinal fluid-induced partial volume effects that interfere with a valid assessment of FA. We investigated the hypothesis that in the acute stage of AN, FA of the fornix is markedly affected by ventricular volumes. METHODS: First, using diffusion tensor imaging data we established the inverse associations between forniceal FA and volumes of the third and lateral ventricles in a prestudy with 32 healthy subjects to demonstrate the strength of ventricular influence on forniceal FA independent of AN. Second, we investigated a sample of 25 acute AN patients and 25 healthy control subjects. RESULTS: Using ventricular volumes as covariates markedly reduced the group effect of forniceal FA, even with tract-based spatial statistics focusing only on the center of the fornix. In addition, after correcting for free water on voxel level, the group differences in forniceal FA between AN patients and controls disappeared completely. CONCLUSIONS: It is unlikely that microstructural changes affecting FA occurred in the fornix of AN patients. Previously identified alterations in acute AN may have been biased by partial volume effects and the proposed central role of this structure in the pathophysiology may need to be reconsidered. Future studies on white matter alterations in AN should carefully deal with partial volume effects.
Maier-Hein KH, Neher PF, Houde J-C, e M-AC, Garyfallidis E, Zhong J, Chamberland M, Yeh F-C, Lin Y-C, Ji Q, et al. The challenge of mapping the human connectome based on diffusion tractography. Nat Commun. 2017;8(1):1349. doi:10.1038/s41467-017-01285-x
Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. Here, we report the encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent). However, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups. Taken together, our results demonstrate and confirm fundamental ambiguities inherent in tract reconstruction based on orientation information alone, which need to be considered when interpreting tractography and connectivity results. Our approach provides a novel framework for estimating reliability of tractography and encourages innovation to address its current limitations.

2016

Wassermann D, Makris N, Rathi Y, Shenton M, Kikinis R, Kubicki M, Westin C-F. The White Matter Query Language: A Novel Approach for Describing Human White Matter Anatomy. Brain Struct Funct. 2016;221(9):4705–4721. doi:10.1007/s00429-015-1179-4

We have developed a novel method to describe human white matter anatomy using an approach that is both intuitive and simple to use, and which automatically extracts white matter tracts from diffusion MRI volumes. Further, our method simplifies the quantification and statistical analysis of white matter tracts on large diffusion MRI databases. This work reflects the careful syntactical definition of major white matter fiber tracts in the human brain based on a neuroanatomist’s expert knowledge. The framework is based on a novel query language with a near-to-English textual syntax. This query language makes it possible to construct a dictionary of anatomical definitions that describe white matter tracts. The definitions include adjacent gray and white matter regions, and rules for spatial relations. This novel method makes it possible to automatically label white matter anatomy across subjects. After describing this method, we provide an example of its implementation where we encode anatomical knowledge in human white matter for ten association and 15 projection tracts per hemisphere, along with seven commissural tracts. Importantly, this novel method is comparable in accuracy to manual labeling. Finally, we present results applying this method to create a white matter atlas from 77 healthy subjects, and we use this atlas in a small proof-of-concept study to detect changes in association tracts that characterize schizophrenia.

Martins JP de A, Topgaard D. Two-Dimensional Correlation of Isotropic and Directional Diffusion Using NMR.. Phys Rev Lett. 2016;116(8):087601. doi:10.1103/PhysRevLett.116.087601
Diffusion nuclear magnetic resonance (NMR) is a powerful technique for studying porous media, but yields ambiguous results when the sample comprises multiple regions with different pore sizes, shapes, and orientations. Inspired by solid-state NMR techniques for correlating isotropic and anisotropic chemical shifts, we propose a diffusion NMR method to resolve said ambiguity. Numerical data inversion relies on sparse representation of the data in a basis of radial and axial diffusivities. Experiments are performed on a composite sample with a cell suspension and a liquid crystal.
Torrado-Carvajal A, Herraiz JL, Hernandez-Tamames JA, San Jose-Estepar R, Eryaman Y, Rozenholc Y, Adalsteinsson E, Wald LL, Malpica N. Multi-atlas and label fusion approach for patient-specific MRI based skull estimation.. Magn Reson Med. 2016;75(4):1797–807. doi:10.1002/mrm.25737
PURPOSE: MRI-based skull segmentation is a useful procedure for many imaging applications. This study describes a methodology for automatic segmentation of the complete skull from a single T1-weighted volume. METHODS: The skull is estimated using a multi-atlas segmentation approach. Using a whole head computed tomography (CT) scan database, the skull in a new MRI volume is detected by nonrigid image registration of the volume to every CT, and combination of the individual segmentations by label-fusion. We have compared Majority Voting, Simultaneous Truth and Performance Level Estimation (STAPLE), Shape Based Averaging (SBA), and the Selective and Iterative Method for Performance Level Estimation (SIMPLE) algorithms. RESULTS: The pipeline has been evaluated quantitatively using images from the Retrospective Image Registration Evaluation database (reaching an overlap of 72.46 ± 6.99%), a clinical CT-MR dataset (maximum overlap of 78.31 ± 6.97%), and a whole head CT-MRI pair (maximum overlap 78.68%). A qualitative evaluation has also been performed on MRI acquisition of volunteers. CONCLUSION: It is possible to automatically segment the complete skull from MRI data using a multi-atlas and label fusion approach. This will allow the creation of complete MRI-based tissue models that can be used in electromagnetic dosimetry applications and attenuation correction in PET/MR.
Pasternak O, Kubicki M, Shenton ME. In vivo imaging of neuroinflammation in schizophrenia.. Schizophr Res. 2016;173(3):200–12. doi:10.1016/j.schres.2015.05.034
In recent years evidence has accumulated to suggest that neuroinflammation might be an early pathology of schizophrenia that later leads to neurodegeneration, yet the exact role in the etiology, as well as the source of neuroinflammation, are still not known. The hypothesis of neuroinflammation involvement in schizophrenia is quickly gaining popularity, and thus it is imperative that we have reliable and reproducible tools and measures that are both sensitive, and, most importantly, specific to neuroinflammation. The development and use of appropriate human in vivo imaging methods can help in our understanding of the location and extent of neuroinflammation in different stages of the disorder, its natural time-course, and its relation to neurodegeneration. Thus far, there is little in vivo evidence derived from neuroimaging methods. This is likely the case because the methods that are specific and sensitive to neuroinflammation are relatively new or only just being developed. This paper provides a methodological review of both existing and emerging positron emission tomography and magnetic resonance imaging techniques that identify and characterize neuroinflammation. We describe \how these methods have been used in schizophrenia research. We also outline the shortcomings of existing methods, and we highlight promising future techniques that will likely improve state-of-the-art neuroimaging as a more refined approach for investigating neuroinflammation in schizophrenia.
Caplan D, Michaud J, Hufford R, Makris N. Deficit-lesion correlations in syntactic comprehension in aphasia.. Brain Lang. 2016;152:14–27. doi:10.1016/j.bandl.2015.10.005
The effects of lesions on syntactic comprehension were studied in thirty-one people with aphasia (PWA). Participants were tested for the ability to parse and interpret four types of syntactic structures and elements - passives, object extracted relative clauses, reflexives and pronouns - in three tasks - object manipulation, sentence picture matching with full sentence presentation and sentence picture matching with self-paced listening presentation. Accuracy, end-of-sentence RT and self-paced listening times for each word were measured. MR scans were obtained and analyzed for total lesion volume and for lesion size in 48 cortical areas. Lesion size in several areas of the left hemisphere was related to accuracy in particular sentence types in particular tasks and to self-paced listening times for critical words in particular sentence types. The results support a model of brain organization that includes areas that are specialized for the combination of particular syntactic and interpretive operations and the use of the meanings produced by those operations to accomplish task-related operations.