Publications

2006

Ziyan U, Tuch D, Westin C-F. Segmentation of thalamic nuclei from DTI using spectral clustering.. Med Image Comput Comput Assist Interv. 2006;9(Pt 2):807–14.
Recent work shows that diffusion tensor imaging (DTI) can help resolving thalamic nuclei based on the characteristic fiber orientation of the corticothalamic/thalamocortical striations within each nucleus. In this paper we describe a novel segmentation method based on spectral clustering. We use Markovian relaxation to handle spatial information in a natural way, and we explicitly minimize the normalized cut criteria of the spectral clustering for a better optimization. Using this modified spectral clustering algorithm, we can resolve the organization of the thalamic nuclei into groups and subgroups solely based on the voxel affinity matrix, avoiding the need for explicitly defined cluster centers. The identification of nuclear subdivisions can facilitate localization of functional activation and pathology to individual nuclear subgroups.
Friman O, Färneback G, Westin C-F. A Bayesian approach for stochastic white matter tractography.. IEEE Trans Med Imaging. 2006;25(8):965–78.
White matter fiber bundles in the human brain can be located by tracing the local water diffusion in diffusion weighted magnetic resonance imaging (MRI) images. In this paper, a novel Bayesian modeling approach for white matter tractography is presented. The uncertainty associated with estimated white matter fiber paths is investigated, and a method for calculating the probability of a connection between two areas in the brain is introduced. The main merits of the presented methodology are its simple implementation and its ability to handle noise in a theoretically justified way. Theory for estimating global connectivity is also presented, as well as a theorem that facilitates the estimation of the parameters in a constrained tensor model of the local water diffusion profile.
Bergmann O, Kindlmann G, Lundervold A, Westin C-F. Diffusion k-tensor estimation from Q-ball imaging using discretized principal axes.. Med Image Comput Comput Assist Interv. 2006;9(Pt 2):268–75.
A reoccurring theme in the diffusion tensor imaging literature is the per-voxel estimation of a symmetric 3 x 3 tensor describing the measured diffusion. In this work we attempt to generalize this approach by calculating 2 or 3 or up to k diffusion tensors for each voxel. We show that our procedure can more accurately describe the diffusion particularly when crossing fibers or fiber-bundles are present in the datasets.
Kindlmann G, Westin C-F. Diffusion tensor visualization with glyph packing.. IEEE Trans Vis Comput Graph. 2006;12(5):1329–35.
A common goal of multivariate visualization is to enable data inspection at discrete points, while also illustrating larger-scale continuous structures. In diffusion tensor visualization, glyphs are typically used to meet the first goal, and methods such as texture synthesis or fiber tractography can address the second. We adapt particle systems originally developed for surface modeling and anisotropic mesh generation to enhance the utility of glyph-based tensor visualizations. By carefully distributing glyphs throughout the field (either on a slice, or in the volume) into a dense packing, using potential energy profiles shaped by the local tensor value, we remove undue visual emphasis of the regular sampling grid of the data, and the underlying continuous features become more apparent. The method is demonstrated on a DT-MRI scan of a patient with a brain tumor.
Pohl KM, Fisher J, Shenton M, McCarley RW, Grimson EL, Kikinis R, Wells WM. Logarithm odds maps for shape representation.. Med Image Comput Comput Assist Interv. 2006;9(Pt 2):955–63.
The concept of the Logarithm of the Odds (LogOdds) is frequently used in areas such as artificial neural networks, economics, and biology. Here, we utilize LogOdds for a shape representation that demonstrates desirable properties for medical imaging. For example, the representation encodes the shape of an anatomical structure as well as the variations within that structure. These variations are embedded in a vector space that relates to a probabilistic model. We apply our representation to a voxel based segmentation algorithm. We do so by embedding the manifold of Signed Distance Maps (SDM) into the linear space of LogOdds. The LogOdds variant is superior to the SDM model in an experiment segmenting 20 subjects into subcortical structures. We also use LogOdds in the non-convex interpolation between space conditioned distributions. We apply this model to a longitudinal schizophrenia study using quadratic splines. The resulting time-continuous simulation of the schizophrenic aging process has a higher accuracy then a model based on convex interpolation.
Kuroki N, Kubicki M, Nestor PG, Salisbury DF, Park H-J, Levitt JJ, Woolston S, Frumin M, Niznikiewicz M, Westin C-F, et al. Fornix integrity and hippocampal volume in male schizophrenic patients.. Biol Psychiatry. 2006;60(1):22–31. doi:10.1016/j.biopsych.2005.09.021
BACKGROUND: The hippocampus has been shown to be abnormal in schizophrenia. The fornix is one of the main fiber tracts connecting the hippocampus with other brain regions. Few studies have evaluated the fornix in schizophrenia, however. A focus on fornix abnormalities and their association with hippocampal abnormalities might figure importantly in our understanding of the pathophysiology of schizophrenia. METHODS: Line-scan diffusion tensor imaging (DTI) was used to evaluate diffusion in the fornix in 24 male patients with chronic schizophrenia and 31 male control subjects. Maps of fractional anisotropy (FA) and mean diffusivity (D(m)), which are indices sensitive to white-matter integrity, were generated to quantify diffusion within the fornix. We used high spatial resolution magnetic resonance imaging (MRI) to measure hippocampal volume. RESULTS: FA and cross-sectional area of the fornix were significantly reduced in patients compared with control subjects. D(m) was significantly increased, whereas hippocampal volume was bilaterally reduced in patients. Reduced hippocampal volume was correlated with increased mean D(m) and reduced cross-sectional area of the fornix for patients. Patients also showed a significant correlation between reduced scores on neuropsychologic measures of declarative-episodic memory and reduced hippocampal volumes. CONCLUSIONS: These findings demonstrate a disruption in fornix integrity in patients with schizophrenia.
Färneback G, Westin C-F. Affine and deformable registration based on polynomial expansion.. Med Image Comput Comput Assist Interv. 2006;9(Pt 1):857–64.
This paper presents a registration framework based on the polynomial expansion transform. The idea of polynomial expansion is that the image is locally approximated by polynomials at each pixel. Starting with observations of how the coefficients of ideal linear and quadratic polynomials change under translation and affine transformation, algorithms are developed to estimate translation and compute affine and deformable registration between a fixed and a moving image, from the polynomial expansion coefficients. All algorithms can be used for signals of any dimensionality. The algorithms are evaluated on medical data.
Kindlmann G, Tricoche X, Westin C-F. Anisotropy creases delineate white matter structure in diffusion tensor MRI.. Med Image Comput Comput Assist Interv. 2006;9(Pt 1):126–33.
Current methods for extracting models of white matter architecture from diffusion tensor MRI are generally based on fiber tractography. For some purposes a compelling alternative may be found in analyzing the first and second derivatives of diffusion anisotropy. Anisotropy creases are ridges and valleys of locally extremal anisotropy, where the gradient of anisotropy is orthogonal to one or more eigenvectors of its Hessian. We propose that anisotropy creases provide a basis for extracting a skeleton of white matter pathways, in that ridges of anisotropy coincide with interiors of fiber tracts, and valleys of anisotropy coincide with the interfaces between adjacent but distinctly oriented tracts. We describe a crease extraction algorithm that generates high-quality polygonal models of crease surfaces, then demonstrate the method on a measured diffusion tensor dataset, and visualize the result in combination with tractography to confirm its anatomic relevance.
Bricault I, Kikinis R, Morrison PR, vanSonnenberg E, Tuncali K, Silverman SG. Liver metastases: 3D shape-based analysis of CT scans for detection of local recurrence after radiofrequency ablation.. Radiology. 2006;241(1):243–50. doi:10.1148/radiol.2411050987
This HIPAA-compliant pilot study had internal review board approval; informed consent was waived. The purpose was to determine retrospectively the diagnostic performance of a computer-aided three-dimensional (3D) analytic tool for assessing local recurrences of liver metastases by quantifying shape changes in ablated tumors on computed tomographic (CT) scans for follow-up of radiofrequency (RF) ablation. Positron emission tomographic and long-term CT follow-up images were reference standards. Fifty-six follow-up CT scans of 12 liver metastases (mean size, 4.0 cm) in nine patients treated with RF ablation were retrospectively analyzed. After the 1st month following RF ablation, the 3D analytic tool helped quantify ablated tumor shape variations and revealed recurrences even in the absence of abnormal enhancement (sensitivity, seven of seven; specificity, three of five). The 3D tool would have revealed a recurrence before it was reported clinically in two patients. Although results are preliminary, a 3D analytic tool based on shape may be useful in assessing RF ablation results.
Levitt JJ, Chen C, May FS, Gilbertson MW, Shenton ME, Pitman RK. Volume of cerebellar vermis in monozygotic twins discordant for combat exposure: lack of relationship to post-traumatic stress disorder.. Psychiatry Res. 2006;148(2-3):143–9. doi:10.1016/j.pscychresns.2006.01.013
Several functional neuroimaging studies have implicated the cerebellar vermis in post-traumatic stress disorder (PTSD), but there have been no structural neuroimaging studies of this brain structure in PTSD. We utilized magnetic resonance imaging (MRI) with manual tracing to quantify the volumes of three divisions of the mid-sagittal vermis, and their total, within an identical, co-twin control design that employed Vietnam veterans discordant for combat exposure in Vietnam. Each structure’s volume was significantly correlated between twins, indicating a partial familial determination: for anterior superior vermis, r=0.73; for posterior superior vermis, r=0.47; for inferior posterior vermis, r=0.51; and for total vermis, r=0.57. There were no significant differences between the PTSD and non-PTSD veterans for any vermis volume, and no significant main effects or interactions when their non-combat-exposed co-twins were added to the analyses. Thus, the results do not support the structural abnormality of cerebellar vermis in combat-related PTSD.