Publications

2008

Napadow V, Dhond R, Conti G, Makris N, Brown EN, Barbieri R. Brain correlates of autonomic modulation: combining heart rate variability with fMRI.. Neuroimage. 2008;42(1):169–77. doi:10.1016/j.neuroimage.2008.04.238
The central autonomic network (CAN) has been described in animal models but has been difficult to elucidate in humans. Potential confounds include physiological noise artifacts affecting brainstem neuroimaging data, and difficulty in deriving non-invasive continuous assessments of autonomic modulation. We have developed and implemented a new method which relates cardiac-gated fMRI timeseries with continuous-time heart rate variability (HRV) to estimate central autonomic processing. As many autonomic structures of interest are in brain regions strongly affected by cardiogenic pulsatility, we chose to cardiac-gate our fMRI acquisition to increase sensitivity. Cardiac-gating introduces T1-variability, which was corrected by transforming fMRI data to a fixed TR using a previously published method [Guimaraes, A.R., Melcher, J.R., et al., 1998. Imaging subcortical auditory activity in humans. Hum. Brain Mapp. 6(1), 33-41]. The electrocardiogram was analyzed with a novel point process adaptive-filter algorithm for computation of the high-frequency (HF) index, reflecting the time-varying dynamics of efferent cardiovagal modulation. Central command of cardiovagal outflow was inferred by using the resample HF timeseries as a regressor to the fMRI data. A grip task was used to perturb the autonomic nervous system. Our combined HRV-fMRI approach demonstrated HF correlation with fMRI activity in the hypothalamus, cerebellum, parabrachial nucleus/locus ceruleus, periaqueductal gray, amygdala, hippocampus, thalamus, and dorsomedial/dorsolateral prefrontal, posterior insular, and middle temporal cortices. While some regions consistent with central cardiovagal control in animal models gave corroborative evidence for our methodology, other mostly higher cortical or limbic-related brain regions may be unique to humans. Our approach should be optimized and applied to study the human brain correlates of autonomic modulation for various stimuli in both physiological and pathological states.
Pasternak O, Bujacz A, Biesiadka J, Bujacz G, Sikorski M, Jaskolski M. MAD phasing using the (Ta6Br12)2+ cluster: a retrospective study.. Acta Crystallogr D Biol Crystallogr. 2008;64(Pt 5):595–606. doi:10.1107/S0907444908007853
The crystal structure of cytokinin-specific binding protein (CSBP) containing four independent molecules with 4 x 155 = 620 residues in the asymmetric unit of the P6(4) unit cell has been solved by three-wavelength MAD using 1.8 angstroms resolution data recorded from a crystal derivatized with the dodecabromohexatantalum cation (Ta6Br12)2+. The diffraction data contained a very strong anomalous signal (allowing successful phasing even using peak SAD data alone) despite the fact that the five (Ta6Br12)2+ clusters found in the asymmetric unit have low occupancy (about 0.3). The derivative structure has been successfully refined to R = 0.158, providing interesting details on the geometry of the (Ta6Br12)2+ cluster, its interactions with the protein and on the backsoaking of a cytokinin ligand that was originally part of a CSBP-cytokinin complex in the native crystals used for (Ta6Br12)2+ derivatization. A simulation analysis of the phasing power of the (Ta6Br12)2+ ions at artificially imposed resolution limits shows that it is not possible to resolve the individual Ta atoms if the dmin limit of the data is higher than 2.9 angstroms. Additionally, for successful Ta identification the (Ta6Br12)2+ complex should be specifically bound and ordered. Good binding at the protein surface is facilitated by the presence of acidic groups, indicating higher pH buffer conditions to be preferable. In addition, the water channels in the crystal should be sufficiently wide (at least 11 angstroms) to allow free diffusion of the (Ta6Br12)2+ ions on soaking. A retrospective look at the initial molecular-replacement calculations provides interesting insights into how the peculiar packing mode and strong bias of the molecular-replacement-phased electron-density maps had hindered successful solution of the structure by this method.
Perlis RH, Holt DJ, Smoller JW, Blood AJ, Lee S, Kim BW, Lee MJ, Sun M, Makris N, Kennedy DK, et al. Association of a polymorphism near CREB1 with differential aversion processing in the insula of healthy participants.. Arch Gen Psychiatry. 2008;65(8):882–92. doi:10.1001/archgenpsychiatry.2008.3
CONTEXT: Previous functional neuroimaging studies have identified a network of brain regions that process aversive stimuli, including anger. A polymorphism near the cyclic adenosine monophosphate response element binding protein gene (CREB1) has recently been associated with greater self-reported effort at anger control as well as risk for antidepressant treatment-emergent suicidality in men with major depressive disorder, but its functional effects have not been studied. OBJECTIVE: To determine whether this genetic variant is associated with altered brain processing of and behavioral avoidance responses to angry facial expressions. DESIGN AND PARTICIPANTS: A total of 28 white participants (mean age, 29.2 years; 13 women) were screened using the Structured Clinical Interview for DSM-IV to exclude any lifetime Axis I psychiatric disorder and were genotyped for rs4675690, a single-nucleotide polymorphism near CREB1. MAIN OUTCOME MEASURES: Blood oxygenation level-dependent signal by functional magnetic resonance imaging in the amygdala, insula, anterior cingulate, and orbitofrontal cortex during passive viewing of photographs of faces with emotional expressions. To measure approach and avoidance responses to anger, an off-line key-press task that traded effort for viewing time assessed valuation of angry faces compared with other expressions. RESULTS: The CREB1-linked single-nucleotide polymorphism was associated with significant differential activation in an extended neural network responding to angry and other facial expressions. The CREB1-associated insular activation was coincident with activation associated with behavioral avoidance of angry faces. CONCLUSIONS: A polymorphism near CREB1 is associated with responsiveness to angry faces in a brain network implicated in processing aversion. Coincident activation in the left insula is further associated with behavioral avoidance of these stimuli.
Fernandes H, Pasternak O, Bujacz G, Bujacz A, Sikorski MM, Jaskolski M. Lupinus luteus pathogenesis-related protein as a reservoir for cytokinin.. J Mol Biol. 2008;378(5):1040–51. doi:10.1016/j.jmb.2008.03.027
Plant pathogenesis-related (PR) proteins of class 10 (PR-10) are small and cytosolic. The main feature of their three-dimensional structure is a large cavity between a seven-stranded antiparallel beta-sheet and a long C-terminal alpha-helix. Although PR-10 proteins are abundant in plants, their physiological role remains unknown. Recent data have indicated ligand binding as their possible biological function. The article describes the structure of a complex between a classic PR-10 protein (yellow lupine LlPR-10.2B) and the plant hormone, trans-zeatin. Previously, trans-zeatin binding has been reported in a structurally related cytokinin-specific binding protein, which has a distant sequence relation with classic PR-10 proteins. In the present 1.35 A resolution crystallographic model, three perfectly ordered zeatin molecules are found in the binding cavity of the protein. The fact that three zeatin molecules are bound by the protein when only a fourfold molar excess of the ligand was used indicates an unusual type of affinity for this ligand and suggests that LlPR-10.2B, and perhaps other PR-10 proteins as well, acts as a reservoir of cytokinin molecules in the aqueous environment of the cell.
Makris N, Oscar-Berman M, Jaffin SK, Hodge SM, Kennedy DN, Caviness VS, Marinkovic K, Breiter HC, Gasic GP, Harris GJ. Decreased volume of the brain reward system in alcoholism.. Biol Psychiatry. 2008;64(3):192–202. doi:10.1016/j.biopsych.2008.01.018
BACKGROUND: Reinforcement of behavioral responses involves a complex cerebral circuit engaging specific neuronal networks that are modulated by cortical oversight systems affiliated with emotion, memory, judgment, and decision making (collectively referred to in this study as the "extended reward and oversight system" or "reward network"). We examined whether reward-network brain volumes are reduced in alcoholics and how volumes of subcomponents within this system are correlated with memory and drinking history. METHODS: Morphometric analysis was performed on magnetic resonance brain scans in 21 abstinent long-term chronic alcoholic men and 21 healthy control men, group-matched on age, verbal IQ, and education. We derived volumes of total brain and volumes of cortical and subcortical reward-related structures including the dorsolateral-prefrontal, orbitofrontal, cingulate cortices, and the insula, as well as the amygdala, hippocampus, nucleus accumbens septi (NAc), and ventral diencephalon. RESULTS: Morphometric analyses of reward-related regions revealed decreased total reward-network volume in alcoholic subjects. Volume reduction was most pronounced in right dorsolateral-prefrontal cortex, right anterior insula, and right NAc, as well as left amygdala. In alcoholics, NAc and anterior insula volumes increased with length of abstinence, and total reward-network and amygdala volumes correlated positively with memory scores. CONCLUSIONS: The observation of decreased reward-network volume suggests that alcoholism is associated with alterations in this neural reward system. These structural reward system deficits and their correlation with memory scores elucidate underlying structural-functional relationships between alcoholism and emotional and cognitive processes.
Harris GJ, Jaffin SK, Hodge SM, Kennedy D, Caviness VS, Marinkovic K, Papadimitriou GM, Makris N, Oscar-Berman M. Frontal white matter and cingulum diffusion tensor imaging deficits in alcoholism.. Alcohol Clin Exp Res. 2008;32(6):1001–13. doi:10.1111/j.1530-0277.2008.00661.x
BACKGROUND: Alcoholism-related deficits in cognition and emotion point toward frontal and limbic dysfunction, particularly in the right hemisphere. Prefrontal and anterior cingulate cortices are involved in cognitive and emotional functions and play critical roles in the oversight of the limbic reward system. In the present study, we examined the integrity of white matter tracts that are critical to frontal and limbic connectivity. METHODS: Diffusion tensor magnetic resonance imaging (DT-MRI) was used to assess functional anisotropy (FA), a measure of white matter integrity, in 15 abstinent long-term chronic alcoholic and 15 demographically equivalent control men. Voxel-based and region-based analyses of group FA differences were applied to these scans. RESULTS: Alcoholic subjects had diminished frontal lobe FA in the right superior longitudinal fascicles II and III, orbitofrontal cortex white matter, and cingulum bundle, but not in corresponding left hemisphere regions. These right frontal and cingulum white matter regional FA measures provided 97% correct group discrimination. Working Memory scores positively correlated with superior longitudinal fascicle III FA measures in control subjects only. CONCLUSIONS: The findings demonstrate white matter microstructure deficits in abstinent alcoholic men in several right hemisphere tracts connecting prefrontal and limbic systems. These white matter deficits may contribute to underlying dysfunction in memory, emotion, and reward response in alcoholism.
Bush G, Spencer TJ, Holmes J, Shin LM, Valera EM, Seidman LJ, Makris N, Surman C, Aleardi M, Mick E, et al. Functional magnetic resonance imaging of methylphenidate and placebo in attention-deficit/hyperactivity disorder during the multi-source interference task.. Arch Gen Psychiatry. 2008;65(1):102–14. doi:10.1001/archgenpsychiatry.2007.16
CONTEXT: Previous studies have reported hypofunction, structural abnormalities, and biochemical abnormalities of the dorsal anterior midcingulate cortex (daMCC) in attention-deficit/hyperactivity disorder (ADHD). Stimulant medications are effective treatments for ADHD, but their neural effects have not been fully characterized. OBJECTIVE: To determine whether the methylphenidate hydrochloride osmotic-release oral system (OROS) would increase functional magnetic resonance imaging (fMRI) activation, compared with placebo, in the daMCC and other frontoparietal regions subserving attention during the Multi-Source Interference Task (MSIT). DESIGN: Randomized, placebo-controlled, 6-week, before-after fMRI study. SETTING: Academic medical center ambulatory clinic.
Frazier JA, Hodge SM, Breeze JL, Giuliano AJ, Terry JE, Moore CM, Kennedy DN, Lopez-Larson MP, Caviness VS, Seidman LJ, et al. Diagnostic and sex effects on limbic volumes in early-onset bipolar disorder and schizophrenia.. Schizophr Bull. 2008;34(1):37–46. doi:10.1093/schbul/sbm120
OBJECTIVE: The limbic structures in early-onset schizophrenia-spectrum illness (SZ) and bipolar disorder (BPD) were studied to discern patterns associated with diagnosis and sex. METHODS: Thirty-five youths with DSM-IV BPD without psychosis, 19 with BPD with psychosis, 20 with SZ, and 29 healthy controls (HC), similar in age (6-17 years) and sex, underwent structured and clinical interviews, neurological examination, and cognitive testing. Structural magnetic resonance images (MRIs) were acquired on a 1.5 Tesla, General Electric Signa Scanner. Differences in subcortical brain volumes, including the amygdala and hippocampus, were evaluated using two-way (diagnosis, sex) univariate analyses covarying for total cerebral volume and age. RESULTS: Youth with SZ and BPD showed no differences in amygdala and hippocampal volumes. However, boys with SZ had smallest left amygdala and girls with BPD had the smallest left hippocampal volumes. In exploratory analyses, SZ showed reduced thalamic volumes bilaterally and both BPD groups had larger right nucleus accumbens (NA) volumes relative to HC. CONCLUSION: There were no limbic volumetric differences between BPD and SZ. However, there were diagnosis-by-sex interactions in the amygdala and hippocampus, structures that are rich in sex hormone receptors. In addition, smaller thalamus was associated with SZ while larger right NA volumes were most related to BPD. This study underscores the importance of assessing diagnostic effects and sex effects on the brain in future studies and provides evidence that boys and girls with SZ and BPD may have differential patterns of neuropathology associated with disease expression.
Makris N, Buka SL, Biederman J, Papadimitriou GM, Hodge SM, Valera EM, Brown AB, Bush G, Monuteaux MC, Caviness VS, et al. Attention and executive systems abnormalities in adults with childhood ADHD: A DT-MRI study of connections.. Cereb Cortex. 2008;18(5):1210–20. doi:10.1093/cercor/bhm156
Attention-deficit/hyperactivity disorder (ADHD) is hypothesized to be due, in part, to structural defects in brain networks influencing cognitive, affective, and motor behaviors. Although the current literature on fiber tracts is limited in ADHD, gray matter abnormalities suggest that white matter (WM) connections may be altered selectively in neural systems. A prior study (Ashtari et al. 2005), using diffusion tensor magnetic resonance imaging (DT-MRI), showed alterations within the frontal and cerebellar WM in children and adolescents with ADHD. In this study of adults with childhood ADHD, we hypothesized that fiber pathways subserving attention and executive functions (EFs) would be altered. To this end, the cingulum bundle (CB) and superior longitudinal fascicle II (SLF II) were investigated in vivo in 12 adults with childhood ADHD and 17 demographically comparable unaffected controls using DT-MRI. Relative to controls, the fractional anisotropy (FA) values were significantly smaller in both regions of interest in the right hemisphere, in contrast to a control region (the fornix), indicating an alteration of anatomical connections within the attention and EF cerebral systems in adults with childhood ADHD. The demonstration of FA abnormalities in the CB and SLF II in adults with childhood ADHD provides further support for persistent structural abnormalities into adulthood.
Lätt J, Nilsson M, Wirestam R, Johansson E, Larsson E-M, Ståhlberg F, Brockstedt S. In vivo visualization of displacement-distribution-derived parameters in q-space imaging.. Magn Reson Imaging. 2008;26(1):77–87. doi:10.1016/j.mri.2007.04.001
OBJECTIVE: This study aimed to explore the potential of in vivo q-space imaging in the differentiation between different cerebral water components. MATERIALS AND METHODS: Diffusion-weighted imaging was performed in six directions with 32 equally spaced q values and a maximum b value of 6600 s/mm(2). The shape of the signal-attenuation curve and the displacement propagator were examined and compared with a normal distribution using the kurtosis parameter. Maps displaying kurtosis, fast and slow components of the apparent diffusion coefficients, fractional anisotropy and directional diffusion were calculated. The displacement propagator was further described by the full width at half and at tenth maximum and by the probability density of zero displacement P(0). Three healthy volunteers and three patients with previously diagnosed multiple sclerosis (MS) were examined. RESULTS: Simulations indicated that the kurtosis of a signal-attenuation curve can determine if more than one water component is present and that care must be taken to select an appropriate threshold. It was possible to distinguish MS plaques in both signal and diffusional kurtosis maps, and in one patient, plaques of different degree of demyelinization showed different behavior. DISCUSSION: Our results indicate that in vivo q-space analysis is a potential tool for the assessment of different cerebral water components, and it might extend the diagnostic interpretation of data from diffusion magnetic resonance imaging.