Publications by Year: 2022

2022

Pansell J, Bell M, Rudberg P, Friman O, Cooray C. Optic Nerve Sheath Diameter Measurement by Ultrasound: Evaluation of a Standardized Protocol. J Neuroimaging. 2022;32(1):104–110. doi:10.1111/jon.12936
BACKGROUND AND PURPOSE: Treatment of elevated intracranial pressure (ICP) is central to neurocritical care, but not all patients are eligible for invasive ICP-monitoring. A promising noninvasive option is ultrasound measurement of the optic nerve sheath diameter (ONSD). However, meta-analyses of ONSD for elevated ICP show wide confidence intervals. This might be due to baseline variations, inter-rater variability, and varying measurement methods. No standardized protocol has been validated. Corrections for eyeball diameter (ED) and optic nerve diameter (OND) may compensate for baseline variations. We evaluated a protocol and compared two different measurement methods for ONSD ultrasound. METHODS: Two operators, blinded to each other’s measurements, measured ONSD, ED, and OND twice in 20 patients. ONSD was measured with two different methods in use: internal (ONSDint) or external (ONSDext) of the dura mater. Intra-class correlation (ICC) was calculated for inter-rater and intra-rater reliability. RESULTS: ICCs for inter-rater reliability of ONSDext and ONSDint (95% confidence interval) were 0.96 (0.93, 0.98) and 0.88 (0.79, 0.94), respectively. ICCs for intra-rater reliability of ONSDext and ONSDint were 0.97 (0.94, 0.99) and 0.93 (0.87, 0.96), respectively. There was no significant bias or difference in intra-rater reliability between operators. CONCLUSIONS: ONSD can be measured with an excellent inter- and intra-rater reliability and low risk of inter-rater bias, when using this protocol. ONSDext yields a higher inter- and intra-rater reliability than ONSDint. Corrections for ED and OND can be performed reliably.
Widge AS, Zhang F, Gosai A, Papadimitrou G, Wilson-Braun P, Tsintou M, Palanivelu S, Noecker AM, McIntyre CC, O’Donnell L, et al. Patient-Specific Connectomic Models Correlate With, but Do Not Reliably Predict, Outcomes in Deep Brain Stimulation for Obsessive-Compulsive Disorder. Neuropsychopharmacology. 2022;47(4):965–72. doi:10.1038/s41386-021-01199-9
Deep brain stimulation (DBS) of the ventral internal capsule/ventral striatum (VCVS) is an emerging treatment for obsessive-compulsive disorder (OCD). Recently, multiple studies using normative connectomes have correlated DBS outcomes to stimulation of specific white matter tracts. Those studies did not test whether these correlations are clinically predictive, and did not apply cross-validation approaches that are necessary for biomarker development. Further, they did not account for the possibility of systematic differences between DBS patients and the non-diagnosed controls used in normative connectomes. To address these gaps, we performed patient-specific diffusion imaging in 8 patients who underwent VCVS DBS for OCD. We delineated tracts connecting thalamus and subthalamic nucleus (STN) to prefrontal cortex via VCVS. We then calculated which tracts were likely activated by individual patients’ DBS settings. We fit multiple statistical models to predict both OCD and depression outcomes from tract activation. We further attempted to predict hypomania, a VCVS DBS complication. We assessed all models’ performance on held-out test sets. With this best-practices approach, no model predicted OCD response, depression response, or hypomania above chance. Coefficient inspection partly supported prior reports, in that capture of tracts projecting to cingulate cortex was associated with both YBOCS and MADRS response. In contrast to prior reports, however, tracts connected to STN were not reliably correlated with response. Thus, patient-specific imaging and a guideline-adherent analysis were unable to identify a tractographic target with sufficient effect size to drive clinical decision-making or predict individual outcomes. These findings suggest caution in interpreting the results of normative connectome studies.
Robles DJ, Dharani A, Rostowsky KA, Chaudhari NN, Ngo V, Zhang F, O’Donnell LJ, Green L, Sheikh-Bahaei N, Chui HC, et al. Older Age, Male Sex, and Cerebral Microbleeds Predict White Matter Loss After Traumatic Brain Injury. Geroscience. 2022;44(1):83–102. doi:10.1007/s11357-021-00459-2
Little is known on how mild traumatic brain injury affects white matter based on age at injury, sex, cerebral microbleeds, and time since injury. Here, we study the fractional anisotropy of white matter to study these effects in 109 participants aged 18-77 (46 females, age μ ± σ = 40 ± 17 years) imaged within [Formula: see text] 1 week and [Formula: see text] 6 months post-injury. Age is found to be linearly associated with white matter degradation, likely due not only to injury but also to cumulative effects of other pathologies and to their interactions with injury. Age is associated with mean anisotropy decreases in the corpus callosum, middle longitudinal fasciculi, inferior longitudinal and occipitofrontal fasciculi, and superficial frontal and temporal fasciculi. Over [Formula: see text] 6 months, the mean anisotropies of the corpus callosum, left superficial frontal fasciculi, and left corticospinal tract decrease significantly. Independently of other predictors, age and cerebral microbleeds contribute to anisotropy decrease in the callosal genu. Chronically, the white matter of commissural tracts, left superficial frontal fasciculi, and left corticospinal tract degrade appreciably, independently of other predictors. Our findings suggest that large commissural and intra-hemispheric structures are at high risk for post-traumatic degradation. This study identifies detailed neuroanatomic substrates consistent with brain injury patients’ age-dependent deficits in information processing speed, interhemispheric communication, motor coordination, visual acuity, sensory integration, reading speed/comprehension, executive function, personality, and memory. We also identify neuroanatomic features underlying white matter degradation whose severity is associated with the male sex. Future studies should compare our findings to functional measures and other neurodegenerative processes.
Ross JC, Hutt DF, Burniston M, Grigore SF, Fontana M, Page J, Hawkins PN, Gilbertson JA, Rowczenio D, Gillmore JD. The Role of Serial 99m Tc-DPD Scintigraphy in Monitoring Cardiac Transthyretin Amyloidosis. Amyloid. 2022;29(1):38–49. doi:10.1080/13506129.2021.1991302
PURPOSE: Cardiac transthyretin amyloidosis is a usually fatal form of restrictive cardiomyopathy for which clinical trials of treatments are ongoing. It is anticipated that quantitative nuclear medicine scintigraphy, which is experiencing growing interest, will soon be used to evaluate treatment efficacy. We investigated its utility for monitoring changes in disease load over a significant time period. METHODS: Sixty-two treatment-naive patients underwent 99mTc-labelled 3,3-diphosphono-1,2propanodicarboxylic acid (99mTc-DPD) scintigraphy two to four times each over a five-year period. Quantitation of cardiac 99mTc-DPD retention was performed according to two established methods: measurement of heart-to-contralateral ratio (H/CL) in the anterior view (planar) and percentage of administered activity in the myocardium (SPECT). RESULTS: In total 170 datasets were analysed. Increased myocardial retention of 99mTc-DPD was demonstrable as early as 12 months from baseline. Year-on-year progression across the cohort was observed using SPECT-based quantitation, though on 30 occasions (27.8%) the change in our estimate was negative. CONCLUSIONS: The spread of our results was notably high compared to the year-on-year increases. If left unaccounted for, variance may draw fallacious conclusions about changes in disease load. We therefore urge caution in drawing conclusions solely from nuclear medicine scintigraphy on a patient-by-patient basis, particularly across a short time period.
Foley EM, Tripodis Y, Yhang E, Koerte IK, Martin BM, Palmisano J, Makris N, Schultz V, Lepage C, Muehlmann M, et al. Quantifying and Examining Reserve in Symptomatic Former National Football League Players. J Alzheimers Dis. 2022;85(2):675–89. doi:10.3233/JAD-210379
BACKGROUND: Repetitive head impacts (RHI) from contact sports have been associated with cognitive and neuropsychiatric disorders. However, not all individuals exposed to RHI develop such disorders. This may be explained by the reserve hypothesis. It remains unclear if the reserve hypothesis accounts for the heterogenous symptom presentation in RHI-exposed individuals. Moreover, optimal measurement of reserve in this population is unclear and likely unique from non-athlete populations. OBJECTIVE: We examined the association between metrics of reserve and cognitive and neuropsychiatric functioning in 89 symptomatic former National Football League players. METHODS: Individual-level proxies (e.g., education) defined reserve. We additionally quantified reserve as remaining residual variance in 1) episodic memory and 2) executive functioning performance, after accounting for demographics and brain pathology. Associations between reserve metrics and cognitive and neuropsychiatric functioning were examined. RESULTS: Higher reading ability was associated with better attention/information processing (β=0.25; 95% CI, 0.05-0.46), episodic memory (β=0.27; 95% CI, 0.06-0.48), semantic and phonemic fluency (β=0.24; 95% CI, 0.02-0.46; β=0.38; 95% CI, 0.17-0.59), and behavioral regulation (β=-0.26; 95% CI, -0.48, -0.03) performance. There were no effects for other individual-level proxies. Residual episodic memory variance was associated with better attention/information processing (β=0.45; 95% CI, 0.25, 0.65), executive functioning (β=0.36; 95% CI, 0.15, 0.57), and semantic fluency (β=0.38; 95% CI, 0.17, 0.59) performance. Residual executive functioning variance was associated with better attention/information processing (β=0.44; 95% CI, 0.24, 0.64) and episodic memory (β=0.37; 95% CI, 0.16, 0.58) performance. CONCLUSION: Traditional reserve proxies (e.g., years of education, occupational attainment) have limitations and may be unsuitable for use in elite athlete samples. Alternative approaches of reserve quantification may prove more suitable for this population.
Zekelman LR, Zhang F, Makris N, He J, Chen Y, Xue T, Liera D, Drane DL, Rathi Y, Golby AJ, et al. White Matter Association Tracts Underlying Language and Theory of Mind: An Investigation of 809 Brains from the Human Connectome Project. Neuroimage. 2022;246:118739. doi:10.1016/j.neuroimage.2021.118739
Language and theory of mind (ToM) are the cognitive capacities that allow for the successful interpretation and expression of meaning. While functional MRI investigations are able to consistently localize language and ToM to specific cortical regions, diffusion MRI investigations point to an inconsistent and sometimes overlapping set of white matter tracts associated with these two cognitive domains. To further examine the white matter tracts that may underlie these domains, we use a two-tensor tractography method to investigate the white matter microstructure of 809 participants from the Human Connectome Project. 20 association white matter tracts (10 in each hemisphere) are uniquely identified by leveraging a neuroanatomist-curated automated white matter tract atlas. The mean fractional anisotropy (FA), mean diffusivity (MD), and number of streamlines (NoS) are measured for each white matter tract. Performance on neuropsychological assessments of semantic memory (NIH Toolbox Picture Vocabulary Test, TPVT) and emotion perception (Penn Emotion Recognition Test, PERT) are used to measure critical subcomponents of the language and ToM networks, respectively. Regression models are constructed to examine how structural measurements of left and right white matter tracts influence performance across these two assessments. We find that semantic memory performance is influenced by the number of streamlines of the left superior longitudinal fasciculus III (SLF-III), and emotion perception performance is influenced by the number of streamlines of the right SLF-III. Additionally, we find that performance on both semantic memory & emotion perception is influenced by the FA of the left arcuate fasciculus (AF). The results point to multiple, overlapping white matter tracts that underlie the cognitive domains of language and ToM. Results are discussed in terms of hemispheric dominance and concordance with prior investigations.
Uretsky M, Bouix S, Killiany RJ, Tripodis Y, Martin B, Palmisano J, Mian AZ, Buch K, Farris C, Daneshvar DH, et al. Association Between Antemortem FLAIR White Matter Hyperintensities and Neuropathology in Brain Donors Exposed to Repetitive Head Impacts. Neurology. 2022;98(1):e27-e39. doi:10.1212/WNL.0000000000013012
BACKGROUND AND OBJECTIVES: Late neuropathologies of repetitive head impacts from contact sports can include chronic traumatic encephalopathy (CTE) and white matter degeneration. White matter hyperintensities (WMH) on fluid attenuated inversion recovery (FLAIR) MRI scans are often viewed as microvascular disease from vascular risk, but might have unique underlying pathologies and risk factors in the setting of repetitive head impacts. We investigated the neuropathological correlates of antemortem WMH in brain donors exposed to repetitive head impacts. The association between WMH, and repetitive head impact exposure and informant-reported cognitive and daily function were tested. METHODS: This imaging-pathological correlation study included symptomatic deceased men exposed to repetitive head impacts. Donors had antemortem FLAIR scans from medical records and were without evidence of CNS neoplasm, large vessel infarcts, hemorrhage, and/or encephalomalacia. WMH were quantified using log-transformed values for total lesion volume (TLV), calculated using the lesion prediction algorithm from the Lesion Segmentation Toolbox. Neuropathological assessments included semi-quantitative ratings of white matter rarefaction, cerebrovascular disease, p-tau severity (CTE stage, dorsolateral frontal cortex), and Aβ. Among football players, years of play was a proxy for repetitive head impact exposure. Retrospective informant-reported cognitive and daily function were assessed using the Cognitive Difficulties Scale (CDS) and Functional Activities Questionnaire (FAQ). Regression models controlled for demographics, diabetes, hypertension, and MRI resolution. Statistical significance was defined as p<0.05. RESULTS: The sample included 75 donors: 67 football players and 8 non-football contact sport athletes and/or military veterans. Dementia was the most common MRI indication (64%). Fifty-three (70.7%) had CTE at autopsy. Log-TLV was associated with white matter rarefaction (OR=2.32, 95% CI=1.03,5.24, p=0.04), arteriolosclerosis (OR=2.38, 95% CI=1.02,5.52, p=0.04), CTE stage (OR=2.58, 95% CI=1.17,5.71, p=0.02), and dorsolateral frontal p-tau severity (OR=3.03, 95% CI=1.32,6.97, p=0.01). There was no association with Aβ. More years of football play was associated with log-TLV (b=0.04, 95% CI=0.01,0.06, p=0.01). Greater log-TLV correlated with higher FAQ (unstandardized beta=4.94, 95% CI=0.42,8.57, p=0.03) and CDS scores (unstandardized beta=15.35, 95% CI=-0.27,30.97, p=0.05). DISCUSSION: WMH might capture long-term white matter pathologies from repetitive head impacts, including those from white matter rarefaction and p-tau, in addition to microvascular disease. Prospective imaging-pathological correlation studies are needed. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence of associations between FLAIR white matter hyperintensities, and neuropathological changes (white matter rarefaction, arteriolosclerosis, p-tau accumulation), years of American football play, and reported cognitive symptoms in symptomatic brain donors exposed to repetitive head impacts.
Arpin DJ, Mitchell T, Archer DB, Burciu RG, Chu WT, Gao H, Guttuso T, Hess CW, Lai S, Malaty IA, et al. Diffusion Magnetic Resonance Imaging Detects Progression in Parkinson’s Disease: A Placebo-Controlled Trial of Rasagiline. Mov Disord. 2022;37(2):325–33. doi:10.1002/mds.28838
BACKGROUND: Rasagiline has received attention as a potential disease-modifying therapy for Parkinson’s disease (PD). Whether rasagiline is disease modifying remains in question. OBJECTIVE: The main objective of this study was to determine whether rasagiline has disease-modifying effects in PD over 1 year. Secondarily we evaluated two diffusion magnetic resonance imaging pulse sequences to determine the best sequence to measure disease progression. METHODS: This prospective, randomized, double-blind, placebo-controlled trial assessed the effects of rasagiline administered at 1 mg/day over 12 months in early-stage PD. The primary outcome was 1-year change in free-water accumulation in posterior substantia nigra (pSN) measured using two diffusion magnetic resonance imaging pulse sequences, one with a repetition time (TR) of 2500 ms (short TR; n = 90) and one with a TR of 6400 ms (long TR; n = 75). Secondary clinical outcomes also were assessed. RESULTS: Absolute change in pSN free-water accumulation was not significantly different between groups (short TR: P = 0.346; long TR: P = 0.228). No significant differences were found in any secondary clinical outcomes between groups. Long TR, but not short TR, data show pSN free-water increased significantly over 1 year (P = 0.025). Movement Disorder Society Unified Parkinson’s Disease Rating Scale testing of motor function, Part III increased significantly over 1 year (P = 0.009), and baseline free-water in the pSN correlated with the 1-year change in Movement Disorder Society Unified Parkinson’s Disease Rating Scale testing of motor function, Part III (P = 0.004) and 1-year change in bradykinesia score (P = 0.044). CONCLUSIONS: We found no evidence that 1 mg/day rasagiline has a disease-modifying effect in PD over 1 year. We found pSN free-water increased over 1 year, and baseline free-water relates to clinical motor progression, demonstrating the importance of diffusion imaging parameters for detecting and predicting PD progression. © 2021 International Parkinson and Movement Disorder Society.
Mason SE, Moreta-Martinez R, Labaki WW, Strand MJ, Regan EA, Bon J, Estepar RSJ, Casaburi R, McDonald M-L, Rossiter HB, et al. Longitudinal Association Between Muscle Loss and Mortality in Ever-Smokers. Chest. 2022;161(4):960–70. doi:10.1016/j.chest.2021.10.047
BACKGROUND: Body composition measures, specifically low weight or reduced muscle mass, are associated with mortality in chronic obstructive pulmonary disease (COPD), but the effect of longitudinal body composition changes is undefined. RESEARCH QUESTION: Is the longitudinal loss of fat-free mass (FFM) associated with increased mortality including in those with initially normal or elevated body composition metrics? STUDY DESIGN AND METHODS: Participants with complete data for at least one visit in the COPDGene (n=9,268) and ECLIPSE studies (1,760) were included and followed for 12 and 8 years, respectively. Pectoralis muscle area (PMA) was derived from thoracic CT scans and used as a proxy for FFM. A longitudinal mixed sub-model for PMA and a Cox proportional hazards sub-model for survival were fitted on a joint distribution using a shared random intercept parameter and Markov chain Monte Carlo parameter estimation. RESULTS: Both cohorts demonstrated a left shifted distribution of baseline FFM, not reflected in BMI, and an increase in all-cause mortality risk associated with longitudinal loss of PMA. For each one cm2 PMA loss, mortality increased 3.1% (95% CI 2.4, 3.7, p<0.001) in COPDGene, and 2.4% (95% CI 0.9, 4.0, p<0.001) in ECLIPSE. Increased mortality risk was independent of enrollment values for BMI and disease severity (BODE index quartiles) and was significant even in participants with initially greater than average PMA. INTERPRETATION: Longitudinal loss of PMA is associated with increased all-cause mortality, regardless of BMI or initial muscle mass. Consideration of novel screening tests and further research into mechanisms contributing to muscle decline may improve risk stratification and identify novel therapeutic targets in ever-smokers.
Brabec J, Szczepankiewicz F, Lennartsson F, Englund E, Pebdani H, Bengzon J, Knutsson L, Westin C-F, Sundgren PC, Nilsson M. Histogram Analysis of Tensor-Valued Diffusion MRI in Meningiomas: Relation to Consistency, Histological Grade and Type. Neuroimage Clin. 2022;33:102912. doi:10.1016/j.nicl.2021.102912
BACKGROUND: Preoperative radiological assessment of meningioma characteristics is of value for pre- and post-operative patient management, counselling, and surgical approach. PURPOSE: To investigate whether tensor-valued diffusion MRI can add to the preoperative prediction of meningioma consistency, grade and type. MATERIALS AND METHODS: 30 patients with intracranial meningiomas (22 WHO grade I, 8 WHO grade II) underwent MRI prior to surgery. Diffusion MRI was performed with linear and spherical b-tensors with b-values up to 2000 s/mm2. The data were used to estimate mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis (MK) and its components-the anisotropic and isotropic kurtoses (MKA and MKI). Meningioma consistency was estimated for 16 patients during resection based on ultrasonic aspiration intensity, ease of resection with instrumentation or suction. Grade and type were determined by histopathological analysis. The relation between consistency, grade and type and dMRI parameters was analyzed inside the tumor ("whole-tumor") and within brain tissue in the immediate periphery outside the tumor ("rim") by histogram analysis. RESULTS: Lower 10th percentiles of MK and MKA in the whole-tumor were associated with firm consistency compared with pooled soft and variable consistency (n = 7 vs 9; U test, p = 0.02 for MKA 10 and p = 0.04 for MK10) and lower 10th percentile of MD with variable against soft and firm (n = 5 vs 11; U test, p = 0.02). Higher standard deviation of MKI in the rim was associated with lower grade (n = 22 vs 8; U test, p = 0.04) and in the MKI maps we observed elevated rim-like structure that could be associated with grade. Higher median MKA and lower median MKI distinguished psammomatous type from other pooled meningioma types (n = 5 vs 25; U test; p = 0.03 for MKA 50 and p = 0.03 and p = 0.04 for MKI 50). CONCLUSION: Parameters from tensor-valued dMRI can facilitate prediction of consistency, grade and type.