Publications by Year: 2022

2022

Estepar RSJ. Artificial Intelligence in Functional Imaging of the Lung. Br J Radiol. 2022;95(1132):20210527. doi:10.1259/bjr.20210527

Artificial intelligence (AI) is transforming the way we perform advanced imaging. From high-resolution image reconstruction to predicting functional response from clinically acquired data, AI is promising to revolutionize clinical evaluation of lung performance, pushing the boundary in pulmonary functional imaging for patients suffering from respiratory conditions. In this review, we overview the current developments and expound on some of the encouraging new frontiers. We focus on the recent advances in machine learning and deep learning that enable reconstructing images, quantitating, and predicting functional responses of the lung. Finally, we shed light on the potential opportunities and challenges ahead in adopting AI for functional lung imaging in clinical settings.

Dana J, Lefebvre TL, Savadjiev P, Bodard S, Gauvin S, Bhatnagar SR, Forghani R, Helenon O, Reinhold C. Malignancy Risk Stratification of Cystic Renal LesionsBased on a Contrast-Enhanced CT-Based Machine Learning Model and a ClinicalDecision Algorithm. Eur Radiol. 2022;32(6):4116–27. doi:10.1007/s00330-021-08449-w

OBJECTIVE: To distinguish benign from malignant cystic renal lesions (CRL) using a contrast-enhanced CT-based radiomics model and a clinical decision algorithm. METHODS: This dual-center retrospective study included patients over 18 years old with CRL between 2005 and 2018. The reference standard was histopathology or 4-year imaging follow-up. Training and testing datasets were acquired from two institutions. Quantitative 3D radiomics analyses were performed on nephrographic phase CT images. Ten-fold cross-validated LASSO regression was applied to the training dataset to identify the most discriminative features. A logistic regression model was trained to classify malignancy and tested on the independent dataset. Reported metrics included areas under the receiver operating characteristic curves (AUC) and balanced accuracy. Decision curve analysis for stratifying patients for surgery was performed in the testing dataset. A decision algorithm was built by combining consensus radiological readings of Bosniak categories and radiomics-based risks. RESULTS: A total of 149 CRL (139 patients; 65 years [56-72]) were included in the training dataset-35 Bosniak(B)-IIF (8.6% malignancy), 23 B-III (43.5%), and 23 B-IV (87.0%)-and 50 CRL (46 patients; 61 years [51-68]) in the testing dataset-12 B-IIF (8.3%), 10 B-III (60.0%), and 9 B-IV (100%). The machine learning model achieved high diagnostic performance in predicting malignancy in the testing dataset (AUC = 0.96; balanced accuracy = 94%). There was a net benefit across threshold probabilities in using the clinical decision algorithm over management guidelines based on Bosniak categories. CONCLUSION: CT-based radiomics modeling accurately distinguished benign from malignant CRL, outperforming the Bosniak classification. The decision algorithm best stratified lesions for surgery and active surveillance. KEY POINTS: • The radiomics model achieved excellent diagnostic performance in identifying malignant cystic renal lesions in an independent testing dataset (AUC = 0.96). • The machine learning-enhanced decision algorithm outperformed the management guidelines based on the Bosniak classification for stratifying patients to surgical ablation or active surveillance.

Pujol S, Cabeen RP, Yelnik J, François C, Vidal SF, Karachi C, Bardinet E, Cosgrove R, Kikinis R. Somatotopic Organization of Hyperdirect Pathway Projections From the Primary Motor Cortex in the Human Brain. Front Neurol. 2022;13:791092. doi:10.3389/fneur.2022.791092

Background: The subthalamic nucleus (STN) is an effective neurosurgical target to improve motor symptoms in Parkinson’s Disease (PD) patients. MR-guided Focused Ultrasound (MRgFUS) subthalamotomy is being explored as a therapeutic alternative to Deep Brain Stimulation (DBS) of the STN. The hyperdirect pathway provides a direct connection between the cortex and the STN and is likely to play a key role in the therapeutic effects of MRgFUS intervention in PD patients. Objective: This study aims to investigate the topography and somatotopy of hyperdirect pathway projections from the primary motor cortex (M1). Methods: We used advanced multi-fiber tractography and high-resolution diffusion MRI data acquired on five subjects of the Human Connectome Project (HCP) to reconstruct hyperdirect pathway projections from M1. Two neuroanatomy experts reviewed the anatomical accuracy of the tracts. We extracted the fascicles arising from the trunk, arm, hand, face and tongue area from the reconstructed pathways. We assessed the variability among subjects based on the fractional anisotropy (FA) and mean diffusivity (MD) of the fibers. We evaluated the spatial arrangement of the different fascicles using the Dice Similarity Coefficient (DSC) of spatial overlap and the centroids of the bundles. Results: We successfully reconstructed hyperdirect pathway projections from M1 in all five subjects. The tracts were in agreement with the expected anatomy. We identified hyperdirect pathway fascicles projecting from the trunk, arm, hand, face and tongue area in all subjects. Tract-derived measurements showed low variability among subjects, and similar distributions of FA and MD values among the fascicles projecting from different M1 areas. We found an anterolateral somatotopic arrangement of the fascicles in the corona radiata, and an average overlap of 0.63 in the internal capsule and 0.65 in the zona incerta. Conclusion: Multi-fiber tractography combined with high-resolution diffusion MRI data enables the identification of the somatotopic organization of the hyperdirect pathway. Our preliminary results suggest that the subdivisions of the hyperdirect pathway projecting from the trunk, arm, hand, face, and tongue motor area are intermixed at the level of the zona incerta and posterior limb of the internal capsule, with a predominantly overlapping topographical organization in both regions. Subject-specific knowledge of the hyperdirect pathway somatotopy could help optimize target definition in MRgFUS intervention.

Wang S, Zhang F, Huang P, Hong H, Jiaerken Y, Yu X, Zhang R, Zeng Q, Zhang Y, Kikinis R, et al. Superficial White Matter Microstructure Affects Processing Speed in Cerebral Small Vessel Disease. Hum Brain Mapp. 2022;43(17):5310–25. doi:10.1002/hbm.26004

White matter hyperintensities (WMH) are a typical feature of cerebral small vessel disease (CSVD), which contributes to about 50% of dementias worldwide. Microstructural alterations in deep white matter (DWM) have been widely examined in CSVD. However, little is known about abnormalities in superficial white matter (SWM) and their relevance for processing speed, the main cognitive deficit in CSVD. In 141 CSVD patients, processing speed was assessed using Trail Making Test Part A. White matter abnormalities were assessed by WMH burden (volume on T2-FLAIR) and diffusion MRI measures. SWM imaging measures had a large contribution to processing speed, despite a relatively low SWM WMH burden. Across all imaging measures, SWM free water (FW) had the strongest association with processing speed, followed by SWM mean diffusivity (MD). SWM FW was the only marker to significantly increase between two subgroups with the lowest WMH burdens. When comparing two subgroups with the highest WMH burdens, the involvement of WMH in the SWM was accompanied by significant differences in processing speed and white matter microstructure. Mediation analysis revealed that SWM FW fully mediated the association between WMH volume and processing speed, while no mediation effect of MD or DWM FW was observed. Overall, results suggest that the SWM has an important contribution to processing speed, while SWM FW is a sensitive imaging marker associated with cognition in CSVD. This study extends the current understanding of CSVD-related dysfunction and suggests that the SWM, as an understudied region, can be a potential target for monitoring pathophysiological processes.

Belkhatir Z, Estepar RSJ, Tannenbaum AR. Wasserstein-based Texture Analysis in Radiomic Studies. Comput Med Imaging Graph. 2022;102:102129. doi:10.1016/j.compmedimag.2022.102129

The emerging field of radiomics that transforms standard-of-care images to quantifiable scalar statistics endeavors to reveal the information hidden in these macroscopic images. The concept of texture is widely used and essential in many radiomic-based studies. Practice usually reduces spatial multidimensional texture matrices, e.g., gray-level co-occurrence matrices (GLCMs), to summary scalar features. These statistical features have been demonstrated to be strongly correlated and tend to contribute redundant information; and does not account for the spatial information hidden in the multivariate texture matrices. This study proposes a novel pipeline to deal with spatial texture features in radiomic studies. A new set of textural features that preserve the spatial information inherent in GLCMs is proposed and used for classification purposes. The set of the new features uses the Wasserstein metric from optimal mass transport theory (OMT) to quantify the spatial similarity between samples within a given label class. In particular, based on a selected subset of texture GLCMs from the training cohort, we propose new representative spatial texture features, which we incorporate into a supervised image classification pipeline. The pipeline relies on the support vector machine (SVM) algorithm along with Bayesian optimization and the Wasserstein metric. The selection of the best GLCM references is considered for each classification label and is performed during the training phase of the SVM classifier using a Bayesian optimizer. We assume that sample fitness is defined based on closeness (in the sense of the Wasserstein metric) and high correlation (Spearman’s rank sense) with other samples in the same class. Moreover, the newly defined spatial texture features consist of the Wasserstein distance between the optimally selected references and the remaining samples. We assessed the performance of the proposed classification pipeline in diagnosing the coronavirus disease 2019 (COVID-19) from computed tomographic (CT) images. To evaluate the proposed spatial features’ added value, we compared the performance of the proposed classification pipeline with other SVM-based classifiers that account for different texture features, namely: statistical features only, optimized spatial features using Euclidean metric, non-optimized spatial features with Wasserstein metric. The proposed technique, which accounts for the optimized spatial texture feature with Wasserstein metric, shows great potential in classifying new COVID CT images that the algorithm has not seen in the training step. The MATLAB code of the proposed classification pipeline is made available. It can be used to find the best reference samples in other data cohorts, which can then be employed to build different prediction models.

Koerte IK, Bahr R, Filipcik P, Gooijers J, Leemans A, Lin AP, Tripodis Y, Shenton ME, Sochen N, Swinnen SP, et al. REPIMPACT - A Prospective Longitudinal Multisite Study on the Effects of Repetitive Head Impacts in Youth Soccer. Brain Imaging Behav. 2022;16(1):492–502. doi:10.1007/s11682-021-00484-x
Repetitive head impacts (RHI) are common in youth athletes participating in contact sports. RHI differ from concussions; they are considered hits to the head that usually do not result in acute symptoms and are therefore also referred to as "subconcussive" head impacts. RHI occur e.g., when heading the ball or during contact with another player. Evidence suggests that exposure to RHI may have cumulative effects on brain structure and function. However, little is known about brain alterations associated with RHI, or about the risk factors that may lead to clinical or behavioral sequelae. REPIMPACT is a prospective longitudinal study of competitive youth soccer players and non-contact sport controls aged 14 to 16 years. The study aims to characterize consequences of exposure to RHI with regard to behavior (i.e., cognition, and motor function), clinical sequelae (i.e., psychiatric and neurological symptoms), brain structure, function, diffusion and biochemistry, as well as blood- and saliva-derived measures of molecular processes associated with exposure to RHI (e.g., circulating microRNAs, neuroproteins and cytokines). Here we present the structure of the REPIMPACT Consortium which consists of six teams of clinicians and scientists in six countries. We further provide detailed information on the specific aims and the design of the REPIMPACT study. The manuscript also describes the progress made in the study thus far. Finally, we discuss important challenges and approaches taken to overcome these challenges.
Qian X, Ji F, Ng KK, Koh AJ, Loo BRY, Townsend MC, Pasternak O, Tay SH, Zhou JH, Mak A. Brain White Matter Extracellular Free-Water Increases Are Related to Reduced Neurocognitive Function in Systemic Lupus Erythematosus. Rheumatology (Oxford). 2022;61(3):1166–74. doi:10.1093/rheumatology/keab511
OBJECTIVES: Brain white matter (WM) microstructural changes evaluated by diffusion MRI are well documented in patients with SLE. Yet, the conventional diffusion tensor imaging technique fails to differentiate WM changes that originate from tissue alterations from those due to increased extracellular free water (FW) related to neuroinflammation, microvascular disruption, atrophy, or other extracellular processes. Here, we sought to delineate changes in WM tissue microstructure and extracellular FW volume and examine their relationships with neurocognitive function in SLE patients. METHODS: Twenty SLE patients [16 females, aged 36.0 (10.6)] without clinically overt neuropsychiatric manifestation and 61 healthy controls (HCs) [29 females, aged 29.2 (9.4)] underwent diffusion MRI and computerized neuropsychological assessments cross-sectionally. The FW imaging method was applied to compare microstructural tissue changes and extracellular FW volume of the brain WM between SLE patients and HCs. Association between extracellular FW changes and neurocognitive performance was studied. RESULTS: SLE patients had higher WM extracellular FW compared with HCs (family-wise-error-corrected P < 0.05), while no group difference was found in FW-corrected tissue compartment and structural connectivity metrics. Extracellular FW increases in SLE patients were associated with poorer neurocognitive performance that probed sustained attention (P = 0.022) and higher cumulative glucocorticoid dose (P = 0.0041). Such findings remained robust after controlling for age, gender, intelligence quotient, and total WM volume. CONCLUSION: The association between WM extracellular FW increases and reduced neurocognitive performance suggest possible microvascular degradation and/or neuroinflammation in SLE patients with clinically inactive disease. The mechanistic impact of cumulative glucocorticoids on WM FW deserves further evaluation.
Seitz-Holland J, Seethaler M, Makris N, Rushmore J, Cho K-IK, Rizzoni E, Vangel M, Sahin OS, Heller C, Pasternak O, et al. The Association of Matrix Metalloproteinase 9 (MMP9) With Hippocampal Volume in Schizophrenia: A Preliminary MRI Study. Neuropsychopharmacology. 2022;47(2):524–30. doi:10.1038/s41386-021-00997-5
Matrix metalloproteinases 9 (MMP9) are enzymes involved in regulating neuroplasticity in the hippocampus. This, combined with evidence for disrupted hippocampal structure and function in schizophrenia, has prompted our current investigation into the relationship between MMP9 and hippocampal volumes in schizophrenia. 34 healthy individuals (mean age = 32.50, male = 21, female = 13) and 30 subjects with schizophrenia (mean age = 33.07, male = 19, female = 11) underwent a blood draw and T1-weighted magnetic resonance imaging. The hippocampus was automatically segmented utilizing FreeSurfer. MMP9 plasma levels were measured with ELISA. ANCOVAs were conducted to compare MMP9 plasma levels (corrected for age and sex) and hippocampal volumes between groups (corrected for age, sex, total intracranial volume). Spearman correlations were utilized to investigate the relationship between symptoms, medication, duration of illness, number of episodes, and MMP9 plasma levels in patients. Last, we explored the correlation between MMP9 levels and hippocampal volumes in patients and healthy individuals separately. Patients displayed higher MMP9 plasma levels than healthy individuals (F(1, 60) = 21.19, p < 0.0001). MMP9 levels correlated with negative symptoms in patients (R = 0.39, p = 0.035), but not with medication, duration of illness, or the number of episodes. Further, patients had smaller left (F(1,59) = 9.12, p = 0.0040) and right (F(1,59) = 6.49, p = 0.013) hippocampal volumes. Finally, left (R = -0.39, p = 0.034) and right (R = -0.37, p = 0.046) hippocampal volumes correlated negatively with MMP9 plasma levels in patients. We observe higher MMP9 plasma levels in SCZ, associated with lower hippocampal volumes, suggesting involvement of MMP9 in the pathology of SCZ. Future studies are needed to investigate how MMP9 influences the pathology of SCZ over the lifespan, whether the observed associations are specific for schizophrenia, and if a therapeutic modulation of MMP9 promotes neuroprotective effects in SCZ.
Wan ES, Hokanson JE, Regan EA, Young KA, Make BJ, DeMeo DL, Mason SE, Estepar RSJ, Crapo JD, Silverman EK. Significant Spirometric Transitions and Preserved Ratio Impaired Spirometry Among Ever Smokers. Chest. 2022;161(3):651–661. doi:10.1016/j.chest.2021.09.021
BACKGROUND: Emerging data from longitudinal studies suggest that preserved ratio impaired spirometry (PRISm), defined by proportionate reductions in FEV1 and FVC, is a heterogeneous population with frequent transitions to other lung function categories relative to individuals with normal and obstructive spirometry. Controversy regarding the clinical significance of these transitions exists (eg, whether transitions merely reflect measurement variability or noise). RESEARCH QUESTION: Are individuals with PRISm enriched for transitions associated with substantial changes in lung function?