Artificial intelligence (AI) is transforming the way we perform advanced imaging. From high-resolution image reconstruction to predicting functional response from clinically acquired data, AI is promising to revolutionize clinical evaluation of lung performance, pushing the boundary in pulmonary functional imaging for patients suffering from respiratory conditions. In this review, we overview the current developments and expound on some of the encouraging new frontiers. We focus on the recent advances in machine learning and deep learning that enable reconstructing images, quantitating, and predicting functional responses of the lung. Finally, we shed light on the potential opportunities and challenges ahead in adopting AI for functional lung imaging in clinical settings.
Publications by Year: 2022
2022
OBJECTIVE: To distinguish benign from malignant cystic renal lesions (CRL) using a contrast-enhanced CT-based radiomics model and a clinical decision algorithm. METHODS: This dual-center retrospective study included patients over 18 years old with CRL between 2005 and 2018. The reference standard was histopathology or 4-year imaging follow-up. Training and testing datasets were acquired from two institutions. Quantitative 3D radiomics analyses were performed on nephrographic phase CT images. Ten-fold cross-validated LASSO regression was applied to the training dataset to identify the most discriminative features. A logistic regression model was trained to classify malignancy and tested on the independent dataset. Reported metrics included areas under the receiver operating characteristic curves (AUC) and balanced accuracy. Decision curve analysis for stratifying patients for surgery was performed in the testing dataset. A decision algorithm was built by combining consensus radiological readings of Bosniak categories and radiomics-based risks. RESULTS: A total of 149 CRL (139 patients; 65 years [56-72]) were included in the training dataset-35 Bosniak(B)-IIF (8.6% malignancy), 23 B-III (43.5%), and 23 B-IV (87.0%)-and 50 CRL (46 patients; 61 years [51-68]) in the testing dataset-12 B-IIF (8.3%), 10 B-III (60.0%), and 9 B-IV (100%). The machine learning model achieved high diagnostic performance in predicting malignancy in the testing dataset (AUC = 0.96; balanced accuracy = 94%). There was a net benefit across threshold probabilities in using the clinical decision algorithm over management guidelines based on Bosniak categories. CONCLUSION: CT-based radiomics modeling accurately distinguished benign from malignant CRL, outperforming the Bosniak classification. The decision algorithm best stratified lesions for surgery and active surveillance. KEY POINTS: • The radiomics model achieved excellent diagnostic performance in identifying malignant cystic renal lesions in an independent testing dataset (AUC = 0.96). • The machine learning-enhanced decision algorithm outperformed the management guidelines based on the Bosniak classification for stratifying patients to surgical ablation or active surveillance.
Background: The subthalamic nucleus (STN) is an effective neurosurgical target to improve motor symptoms in Parkinson’s Disease (PD) patients. MR-guided Focused Ultrasound (MRgFUS) subthalamotomy is being explored as a therapeutic alternative to Deep Brain Stimulation (DBS) of the STN. The hyperdirect pathway provides a direct connection between the cortex and the STN and is likely to play a key role in the therapeutic effects of MRgFUS intervention in PD patients. Objective: This study aims to investigate the topography and somatotopy of hyperdirect pathway projections from the primary motor cortex (M1). Methods: We used advanced multi-fiber tractography and high-resolution diffusion MRI data acquired on five subjects of the Human Connectome Project (HCP) to reconstruct hyperdirect pathway projections from M1. Two neuroanatomy experts reviewed the anatomical accuracy of the tracts. We extracted the fascicles arising from the trunk, arm, hand, face and tongue area from the reconstructed pathways. We assessed the variability among subjects based on the fractional anisotropy (FA) and mean diffusivity (MD) of the fibers. We evaluated the spatial arrangement of the different fascicles using the Dice Similarity Coefficient (DSC) of spatial overlap and the centroids of the bundles. Results: We successfully reconstructed hyperdirect pathway projections from M1 in all five subjects. The tracts were in agreement with the expected anatomy. We identified hyperdirect pathway fascicles projecting from the trunk, arm, hand, face and tongue area in all subjects. Tract-derived measurements showed low variability among subjects, and similar distributions of FA and MD values among the fascicles projecting from different M1 areas. We found an anterolateral somatotopic arrangement of the fascicles in the corona radiata, and an average overlap of 0.63 in the internal capsule and 0.65 in the zona incerta. Conclusion: Multi-fiber tractography combined with high-resolution diffusion MRI data enables the identification of the somatotopic organization of the hyperdirect pathway. Our preliminary results suggest that the subdivisions of the hyperdirect pathway projecting from the trunk, arm, hand, face, and tongue motor area are intermixed at the level of the zona incerta and posterior limb of the internal capsule, with a predominantly overlapping topographical organization in both regions. Subject-specific knowledge of the hyperdirect pathway somatotopy could help optimize target definition in MRgFUS intervention.
White matter hyperintensities (WMH) are a typical feature of cerebral small vessel disease (CSVD), which contributes to about 50% of dementias worldwide. Microstructural alterations in deep white matter (DWM) have been widely examined in CSVD. However, little is known about abnormalities in superficial white matter (SWM) and their relevance for processing speed, the main cognitive deficit in CSVD. In 141 CSVD patients, processing speed was assessed using Trail Making Test Part A. White matter abnormalities were assessed by WMH burden (volume on T2-FLAIR) and diffusion MRI measures. SWM imaging measures had a large contribution to processing speed, despite a relatively low SWM WMH burden. Across all imaging measures, SWM free water (FW) had the strongest association with processing speed, followed by SWM mean diffusivity (MD). SWM FW was the only marker to significantly increase between two subgroups with the lowest WMH burdens. When comparing two subgroups with the highest WMH burdens, the involvement of WMH in the SWM was accompanied by significant differences in processing speed and white matter microstructure. Mediation analysis revealed that SWM FW fully mediated the association between WMH volume and processing speed, while no mediation effect of MD or DWM FW was observed. Overall, results suggest that the SWM has an important contribution to processing speed, while SWM FW is a sensitive imaging marker associated with cognition in CSVD. This study extends the current understanding of CSVD-related dysfunction and suggests that the SWM, as an understudied region, can be a potential target for monitoring pathophysiological processes.
The emerging field of radiomics that transforms standard-of-care images to quantifiable scalar statistics endeavors to reveal the information hidden in these macroscopic images. The concept of texture is widely used and essential in many radiomic-based studies. Practice usually reduces spatial multidimensional texture matrices, e.g., gray-level co-occurrence matrices (GLCMs), to summary scalar features. These statistical features have been demonstrated to be strongly correlated and tend to contribute redundant information; and does not account for the spatial information hidden in the multivariate texture matrices. This study proposes a novel pipeline to deal with spatial texture features in radiomic studies. A new set of textural features that preserve the spatial information inherent in GLCMs is proposed and used for classification purposes. The set of the new features uses the Wasserstein metric from optimal mass transport theory (OMT) to quantify the spatial similarity between samples within a given label class. In particular, based on a selected subset of texture GLCMs from the training cohort, we propose new representative spatial texture features, which we incorporate into a supervised image classification pipeline. The pipeline relies on the support vector machine (SVM) algorithm along with Bayesian optimization and the Wasserstein metric. The selection of the best GLCM references is considered for each classification label and is performed during the training phase of the SVM classifier using a Bayesian optimizer. We assume that sample fitness is defined based on closeness (in the sense of the Wasserstein metric) and high correlation (Spearman’s rank sense) with other samples in the same class. Moreover, the newly defined spatial texture features consist of the Wasserstein distance between the optimally selected references and the remaining samples. We assessed the performance of the proposed classification pipeline in diagnosing the coronavirus disease 2019 (COVID-19) from computed tomographic (CT) images. To evaluate the proposed spatial features’ added value, we compared the performance of the proposed classification pipeline with other SVM-based classifiers that account for different texture features, namely: statistical features only, optimized spatial features using Euclidean metric, non-optimized spatial features with Wasserstein metric. The proposed technique, which accounts for the optimized spatial texture feature with Wasserstein metric, shows great potential in classifying new COVID CT images that the algorithm has not seen in the training step. The MATLAB code of the proposed classification pipeline is made available. It can be used to find the best reference samples in other data cohorts, which can then be employed to build different prediction models.