Publications by Year: 2020

2020

Di Biase MA, Zhang F, Lyall A, Kubicki M, Mandl R e CW, Sommer IE, Pasternak O. Neuroimaging auditory verbal hallucinations in schizophrenia patient and healthy populations. Psychol Med. 2020;50(3):403–412. doi:10.1017/S0033291719000205
BACKGROUND: Auditory verbal hallucinations (AVH) are a cardinal feature of schizophrenia, but they can also appear in otherwise healthy individuals. Imaging studies implicate language networks in the generation of AVH; however, it remains unclear if alterations reflect biologic substrates of AVH, irrespective of diagnostic status, age, or illness-related factors. We applied multimodal imaging to identify AVH-specific pathology, evidenced by overlapping gray or white matter deficits between schizophrenia patients and healthy voice-hearers. METHODS: Diffusion-weighted and T1-weighted magnetic resonance images were acquired in 35 schizophrenia patients with AVH (SCZ-AVH), 32 healthy voice-hearers (H-AVH), and 40 age- and sex-matched controls without AVH. White matter fractional anisotropy (FA) and gray matter thickness (GMT) were computed for each region comprising ICBM-DTI and Desikan-Killiany atlases, respectively. Regions were tested for significant alterations affecting both SCZ-AVH and H-AVH groups, relative to controls. RESULTS: Compared with controls, the SCZ-AVH showed widespread FA and GMT reductions; but no significant differences emerged between H-AVH and control groups. While no overlapping pathology appeared in the overall study groups, younger (
Duering M, Adam R, Wollenweber FA, Bayer-Karpinska A, Baykara E, Cubillos-Pinilla LY, Gesierich B, Caballero M \ AA, Stoecklein S, Ewers M, et al. Within-lesion heterogeneity of subcortical DWI lesion evolution, and stroke outcome: A voxel-based analysis. J Cereb Blood Flow Metab. 2020;40(7):1482–1491. doi:10.1177/0271678X19865916
The fate of subcortical diffusion-weighted imaging (DWI) lesions in stroke patients is highly variable, ranging from complete tissue loss to no visible lesion on follow-up. Little is known about within-lesion heterogeneity and its relevance for stroke outcome. Patients with subcortical stroke and recruited through the prospective DEDEMAS study (NCT01334749) were examined at baseline ( = 45), six months ( = 45), and three years ( = 28) post-stroke. We performed high-resolution structural MRI including DWI. Tissue fate was determined voxel-wise using fully automated tissue segmentation. Within-lesion heterogeneity at baseline was assessed by free water diffusion imaging measures. The majority of DWI lesions (66%) showed cavitation on six months follow-up but the proportion of tissue turning into a cavity was small (9 ± 13.5% of the DWI lesion). On average, 69 ± 25% of the initial lesion resolved without any visually apparent signal abnormality. The extent of cavitation at six months post-stroke was independently associated with clinical outcome, i.e. modified Rankin scale score at six months (OR = 4.71, = 0.005). DWI lesion size and the free water-corrected tissue mean diffusivity at baseline independently predicted cavitation. In conclusion, the proportion of cavitating tissue is typically small, but relevant for clinical outcome. Within-lesion heterogeneity at baseline on advanced diffusion imaging is predictive of tissue fate.
Wu W, McAnulty G, Hamoda HM, Sarill K, Karmacharya S, Gagoski B, Ning L, Grant E, Shenton ME, Waber DP, et al. Detecting microstructural white matter abnormalities of frontal pathways in children with ADHD using advanced diffusion models. Brain Imaging Behav. 2020;14(4):981–997. doi:10.1007/s11682-019-00108-5
Studies using diffusion tensor imaging (DTI) have documented alterations in the attention and executive system in children and adolescents with attention-deficit/hyperactivity disorder (ADHD). While abnormalities in the frontal lobe have also been reported, the associated white matter fiber bundles have not been investigated comprehensively due to the complexity in tracing them through fiber crossings. Furthermore, most studies have used a non-specific DTI model to understand white matter abnormalities. We present results from a first study that uses a multi-shell diffusion MRI (dMRI) data set coupled with an advanced multi-fiber tractography algorithm to probe microstructural measures related to axonal/cellular density and volume of fronto-striato-thalamic pathways in children with ADHD (N = 30) and healthy controls (N = 28). Head motion was firstly examined as a priority in order to assure that no group difference existed. We investigated 45 different white matter fiber bundles in the brain. After correcting for multiple comparisons, we found lower axonal/cellular packing density and volume in ADHD children in 8 of the 45 fiber bundles, primarily in the right hemisphere as follows: 1) Superior longitudinal fasciculus-II (SLF-II) (right), 2) Thalamus to precentral gyrus (right), 3) Thalamus to superior-frontal gyrus (right), 4) Caudate to medial orbitofrontal gyrus (right), 5) Caudate to precentral gyrus (right), 6) Thalamus to paracentral gyrus (left), 7) Caudate to caudal middlefrontal gyrus (left), and 8) Cingulum (bilateral). Our results demonstrate reduced axonal/cellular density and volume in certain frontal lobe white matter fiber tracts, which sub-serve the attention function and executive control systems. Further, our work shows specific microstructural abnormalities in the striato-thalamo-cortical connections, which have not been previously reported in children with ADHD.
Dalamagkas K, Tsintou M, Rathi Y, O’Donnell LJ, Pasternak O, Gong X, Zhu A, Savadjiev P, Papadimitriou GM, Kubicki M, et al. Individual variations of the human corticospinal tract and its hand-related motor fibers using diffusion MRI tractography. Brain Imaging Behav. 2020;14(3):696–714. doi:10.1007/s11682-018-0006-y
The corticospinal tract (CST) is one of the most well studied tracts in human neuroanatomy. Its clinical significance can be demonstrated in many notable traumatic conditions and diseases such as stroke, spinal cord injury (SCI) or amyotrophic lateral sclerosis (ALS). With the advent of diffusion MRI and tractography the computational representation of the human CST in a 3D model became available. However, the representation of the entire CST and, specifically, the hand motor area has remained elusive. In this paper we propose a novel method, using manually drawn ROIs based on robustly identifiable neuroanatomic structures to delineate the entire CST and isolate its hand motor representation as well as to estimate their variability and generate a database of their volume, length and biophysical parameters. Using 37 healthy human subjects we performed a qualitative and quantitative analysis of the CST and the hand-related motor fiber tracts (HMFTs). Finally, we have created variability heat maps from 37 subjects for both the aforementioned tracts, which could be utilized as a reference for future studies with clinical focus to explore neuropathology in both trauma and disease states.
Alosco ML, Tripodis Y, Rowland B, Chua AS, Liao H, Martin B, Jarnagin J, Chaisson CE, Pasternak O, Karmacharya S, et al. A magnetic resonance spectroscopy investigation in symptomatic former NFL players. Brain Imaging Behav. 2020;14(5):1419–1429. doi:10.1007/s11682-019-00060-4
The long-term neurologic consequences of exposure to repetitive head impacts (RHI) are not well understood. This study used magnetic resonance spectroscopy (MRS) to examine later-life neurochemistry and its association with RHI and clinical function in former National Football League (NFL) players. The sample included 77 symptomatic former NFL players and 23 asymptomatic individuals without a head trauma history. Participants completed cognitive, behavior, and mood measures. N-acetyl aspartate, glutamate/glutamine, choline, myo-inositol, creatine, and glutathione were measured in the posterior (PCG) and anterior (ACG) cingulate gyrus, and parietal white matter (PWM). A cumulative head impact index (CHII) estimated RHI. In former NFL players, a higher CHII correlated with lower PWM creatine (r = -0.23, p = 0.02). Multivariate mixed-effect models examined neurochemical differences between the former NFL players and asymptomatic individuals without a history of head trauma. PWM N-acetyl aspartate was lower among the former NFL players (mean diff. = 1.02, p = 0.03). Between-group analyses are preliminary as groups were recruited based on symptomatic status. The ACG was the only region associated with clinical function, including positive correlations between glutamate (r = 0.32, p = 0.004), glutathione (r = 0.29, p = 0.02), and myo-inositol (r = 0.26, p = 0.01) with behavioral/mood symptoms. Other positive correlations between ACG neurochemistry and clinical function emerged (i.e., behavioral/mood symptoms, cognition), but the positive directionality was unexpected. All analyses controlled for age, body mass index, and education (for analyses examining clinical function). In this sample of symptomatic former NFL players, there was a direct effect between RHI and reduced cellular energy metabolism (i.e., lower creatine). MRS neurochemicals associated with neuroinflammation also correlated with behavioral/mood symptoms.
Eisenberg HM, Shenton ME, Pasternak O, Simard M, Okonkwo DO, Aldrich C, He F, Jain S, Hayman EG. Magnetic Resonance Imaging Pilot Study of Intravenous Glyburide in Traumatic Brain Injury. J Neurotrauma. 2020;37(1):185–193. doi:10.1089/neu.2019.6538
Pre-clinical studies of traumatic brain injury (TBI) show that glyburide reduces edema and hemorrhagic progression of contusions. We conducted a small Phase II, three-institution, randomized placebo-controlled trial of subjects with TBI to assess the safety and efficacy of intravenous (IV) glyburide. Twenty-eight subjects were randomized and underwent a 72-h infusion of IV glyburide or placebo, beginning within 10 h of trauma. Of the 28 subjects, 25 had Glasgow Coma Scale (GCS) scores of 6-10, and 14 had contusions. There were no differences in adverse events (AEs) or severe adverse events (ASEs) between groups. The magnetic resonance imaging (MRI) percent change at 72-168 h from screening/baseline was compared between the glyburide and placebo groups. Analysis of contusions (7 per group) showed that lesion volumes (hemorrhage plus edema) increased 1036% with placebo versus 136% with glyburide ( = 0.15), and that hemorrhage volumes increased 11.6% with placebo but decreased 29.6% with glyburide ( = 0.62). Three diffusion MRI measures of edema were quantified: mean diffusivity (MD), free water (FW), and tissue MD (MDt), corresponding to overall, extracellular, and intracellular water, respectively. The percent change with time for each measure was compared in lesions ( = 14) versus uninjured white matter ( = 24) in subjects receiving placebo ( = 20) or glyburide ( = 18). For placebo, the percent change in lesions for all three measures was significantly different compared with uninjured white matter (analysis of variance [ANOVA]
Ding W, Liping N, Xing H, Wei Z, Zhoua Q, Nong R, Chen J. Essential oil extracted from leaf of(Hemsl.) yang: chemical constituents, antitumor, antibacterial, hypoglycemic activities. Nat Prod Res. 2020;34(17):2524–2527. doi:10.1080/14786419.2018.1542393
The essential oil were extracted from the leaf of (Hemsl.) Yang by a hydrothermal method and then analyzed by gas chromatography-mass spectrometry. The leaf oil mainly included -copaene (5.44%), -muurolene (7.32%), -cadinene (11.44%), 1s-calamenene (5.18%). (Hemsl.) Yang leaf essential oil had significant inhibitory activity against and , the potential antitumor activity towards leukemia, breast, and colon cancer cell lines was good. (Hemsl.) Yang leaf essential oil had weaker activity on the four tested bacteria, it exhibited a certain role in promoting glucose uptake by adipocytes.
Sydnor VJ, Lyall AE, Cetin-Karayumak S, Cheung JC, Felicione JM, Akeju O, Shenton ME, Deckersbach T, Ionescu DF, Pasternak O, et al. Studying pre-treatment and ketamine-induced changes in white matter microstructure in the context of ketamine’s antidepressant effects. Transl Psychiatry. 2020;10(1):432. doi:10.1038/s41398-020-01122-8
Ketamine is increasingly being used as a therapeutic for treatment-resistant depression (TRD), yet the effects of ketamine on the human brain remain largely unknown. This pilot study employed diffusion magnetic resonance imaging (dMRI) to examine relationships between ketamine treatment and white matter (WM) microstructure, with the aim of increasing the current understanding of ketamine’s neural mechanisms of action in humans. Longitudinal dMRI data were acquired from 13 individuals with TRD two hours prior to (pre-infusion), and four hours following (post-infusion), an intravenous ketamine infusion. Free-water imaging was employed to quantify cerebrospinal fluid-corrected mean fractional anisotropy (FA) in 15 WM bundles pre- and post-infusion. Analyses revealed that higher pre-infusion FA in the left cingulum bundle and the left superior longitudinal fasciculus was associated with greater depression symptom improvement 24 h post-ketamine. Moreover, four hours after intravenous administration of ketamine, FA rapidly increased in numerous WM bundles in the brain; this increase was significantly associated with 24 h symptom improvement in select bundles. Overall, the results of this preliminary study suggest that WM properties, as measured by dMRI, may have a potential impact on clinical improvement following ketamine. Ketamine administration additionally appears to be associated with rapid WM diffusivity changes, suggestive of rapid changes in WM microstructure. This study thus points to pre-treatment WM structure as a potential factor associated with ketamine’s clinical efficacy, and to post-treatment microstructural changes as a candidate neuroimaging marker of ketamine’s cellular mechanisms.
Belkhatir Z, epar R ul SJ e E, Tannenbaum AR. Supervised Image Classification Algorithm Using Representative Spatial Texture Features: Application to COVID-19 Diagnosis Using CT Images. medRxiv. 2020;2020.12.03.20243493. doi:10.1101/2020.12.03.20243493
Although there is no universal definition for texture, the concept in various forms is nevertheless widely used and a key element of visual perception to analyze images in different fields. The present work’s main idea relies on the assumption that there exist representative samples, which we refer to as references as well, i.e., "good or bad" samples that represent a given dataset investigated in a particular data analysis problem. These representative samples need to be accounted for when designing predictive models with the aim of improving their performance. In particular, based on a selected subset of texture gray-level co-occurrence matrices (GLCMs) from the training cohort, we propose new representative spatial texture features, which we incorporate into a supervised image classification pipeline. The pipeline relies on the support vector machine (SVM) algorithm along with Bayesian optimization and the Wasserstein metric from optimal mass transport (OMT) theory. The selection of the best, "good and bad," GLCM references is considered for each classification label and performed during the training phase of the SVM classifier using a Bayesian optimizer. We assume that sample fitness is defined based on closeness (in the sense of the Wasserstein metric) and high correlation (Spearman’s rank sense) with other samples in the same class. Moreover, the newly defined spatial texture features consist of the Wasserstein distance between the optimally selected references and the remaining samples. We assessed the performance of the proposed classification pipeline in diagnosing the corona virus disease 2019 (COVID-19) from computed tomographic (CT) images.