Publications by Year: 2014

2014

Rydhög AS, van Osch MJP, Lindgren E, Nilsson M, Lätt J, ahlberg FS, Wirestam R, Knutsson L. Intravoxel incoherent motion (IVIM) imaging at different magnetic field strengths: what is feasible?. Magn Reson Imaging. 2014;32(10):1247–58. doi:10.1016/j.mri.2014.07.013
BACKGROUND: Due to limited SNR the cerebral applications of the intravoxel incoherent motion (IVIM) concept have been sparse. MRI hardware developments have resulted in improved SNR and this may justify a reassessment of IVIM imaging for non-invasive quantification of the cerebral blood volume (CBV) as a first step toward determining the optimal field strength. PURPOSE: To investigate intravoxel incoherent motion imaging for its potential to assess cerebral blood volume (CBV) at three different MRI field strengths. MATERIALS AND METHODS: Four volunteers were scanned twice at 1.5 T, 3 T as well as 7 T. By correcting for field-strength-dependent effects of relaxation, estimates of corrected CBV (cCBV) were obtained in deep gray matter (DGM), frontal gray matter (FGM) and frontal white matter (FWM), using Bayesian analysis. In addition, simulations were performed to facilitate the interpretation of experimental data. RESULTS: In DGM, FGM and FWM we obtained cCBV estimates of 2.2 ml/100 ml, 2.7 ml/100 ml, 1.4 ml/100 ml at 1.5 T; 3.7 ml/100 ml, 5.0 ml/100 ml, 3.2 ml/100 ml at 3 T and 15.5 ml/100 ml, 20.3 ml/100 ml, 7.0 ml/100 ml at 7 T.
Holst LB, Haase N, Wetterslev J, Wernerman J, Guttormsen AB, Karlsson S, Johansson PI, Aneman A, Vang ML, Winding R, et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014;371(15):1381–91. doi:10.1056/NEJMoa1406617
BACKGROUND: Blood transfusions are frequently given to patients with septic shock. However, the benefits and harms of different hemoglobin thresholds for transfusion have not been established. METHODS: In this multicenter, parallel-group trial, we randomly assigned patients in the intensive care unit (ICU) who had septic shock and a hemoglobin concentration of 9 g per deciliter or less to receive 1 unit of leukoreduced red cells when the hemoglobin level was 7 g per deciliter or less (lower threshold) or when the level was 9 g per deciliter or less (higher threshold) during the ICU stay. The primary outcome measure was death by 90 days after randomization.
Ringaby E, Friman O, en P-EF, Opsahl TO, Haavardsholm TV, asen IK. Anisotropic scattered data interpolation for pushbroom image rectification. IEEE Trans Image Process. 2014;23(5):2302–14. doi:10.1109/TIP.2014.2316377
This paper deals with fast and accurate visualization of pushbroom image data from airborne and spaceborne platforms. A pushbroom sensor acquires images in a line-scanning fashion, and this results in scattered input data that need to be resampled onto a uniform grid for geometrically correct visualization. To this end, we model the anisotropic spatial dependence structure caused by the acquisition process. Several methods for scattered data interpolation are then adapted to handle the induced anisotropic metric and compared for the pushbroom image rectification problem. A trick that exploits the semiordered line structure of pushbroom data to improve the computational complexity several orders of magnitude is also presented.
Gilman JM, Kuster JK, Lee S, Lee MJ, Kim BW, Makris N, van der Kouwe A, Blood AJ, Breiter HC. Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users. J Neurosci. 2014;34(16):5529–38. doi:10.1523/JNEUROSCI.4745-13.2014
Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization.
Rathi Y, Michailovich O, Laun F, Setsompop K, Grant PE, Westin C-F. Multi-shell diffusion signal recovery from sparse measurements. Med Image Anal. 2014;18(7):1143–56. doi:10.1016/j.media.2014.06.003
For accurate estimation of the ensemble average diffusion propagator (EAP), traditional multi-shell diffusion imaging (MSDI) approaches require acquisition of diffusion signals for a range of b-values. However, this makes the acquisition time too long for several types of patients, making it difficult to use in a clinical setting. In this work, we propose a new method for the reconstruction of diffusion signals in the entire q-space from highly undersampled sets of MSDI data, thus reducing the scan time significantly. In particular, to sparsely represent the diffusion signal over multiple q-shells, we propose a novel extension to the framework of spherical ridgelets by accurately modeling the monotonically decreasing radial component of the diffusion signal. Further, we enforce the reconstructed signal to have smooth spatial regularity in the brain, by minimizing the total variation (TV) norm. We combine these requirements into a novel cost function and derive an optimal solution using the Alternating Directions Method of Multipliers (ADMM) algorithm. We use a physical phantom data set with known fiber crossing angle of 45° to determine the optimal number of measurements (gradient directions and b-values) needed for accurate signal recovery. We compare our technique with a state-of-the-art sparse reconstruction method (i.e., the SHORE method of Cheng et al. (2010)) in terms of angular error in estimating the crossing angle, incorrect number of peaks detected, normalized mean squared error in signal recovery as well as error in estimating the return-to-origin probability (RTOP). Finally, we also demonstrate the behavior of the proposed technique on human in vivo data sets. Based on these experiments, we conclude that using the proposed algorithm, at least 60 measurements (spread over three b-value shells) are needed for proper recovery of MSDI data in the entire q-space.
Rathi Y, Pasternak O, Savadjiev P, Michailovich O, Bouix S, Kubicki M, Westin C-F, Makris N, Shenton ME. Gray matter alterations in early aging: a diffusion magnetic resonance imaging study. Hum Brain Mapp. 2014;35(8):3841–56. doi:10.1002/hbm.22441
Many studies have observed altered neurofunctional and structural organization in the aging brain. These observations from functional neuroimaging studies show a shift in brain activity from the posterior to the anterior regions with aging (PASA model), as well as a decrease in cortical thickness, which is more pronounced in the frontal lobe followed by the parietal, occipital, and temporal lobes (retrogenesis model). However, very little work has been done using diffusion MRI (dMRI) with respect to examining the structural tissue alterations underlying these neurofunctional changes in the gray matter. Thus, for the first time, we propose to examine gray matter changes using diffusion MRI in the context of aging. In this work, we propose a novel dMRI based measure of gray matter "heterogeneity" that elucidates these functional and structural models (PASA and retrogenesis) of aging from the viewpoint of diffusion MRI. In a cohort of 85 subjects (all males, ages 15-55 years), we show very high correlation between age and "heterogeneity" (a measure of structural layout of tissue in a region-of-interest) in specific brain regions. We examine gray matter alterations by grouping brain regions into anatomical lobes as well as functional zones. Our findings from dMRI data connects the functional and structural domains and confirms the "retrogenesis" hypothesis of gray matter alterations while lending support to the neurofunctional PASA model of aging in addition to showing the preservation of paralimbic areas during healthy aging.
Cho MH, McDonald M-LN, Zhou X, Mattheisen M, Castaldi PJ, Hersh CP, DeMeo DL, Sylvia JS, Ziniti J, Laird NM, et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir Med. 2014;2(3):214–25. doi:10.1016/S2213-2600(14)70002-5
BACKGROUND: The genetic risk factors for susceptibility to chronic obstructive pulmonary disease (COPD) are still largely unknown. Additional genetic variants are likely to be identified by genome-wide association studies in larger cohorts or specific subgroups. We sought to identify risk loci for moderate to severe and severe COPD with data from several cohort studies. METHODS: We combined genome-wide association analysis data from participants in the COPDGene study (non-Hispanic white and African-American ethnic origin) and the ECLIPSE, NETT/NAS, and Norway GenKOLS studies (self-described white ethnic origin). We did analyses comparing control individuals with individuals with moderate to severe COPD and with a subset of individuals with severe COPD. Single nucleotide polymorphisms yielding a p value of less than 5 × 10(-7) in the meta-analysis at loci not previously described were genotyped in individuals from the family-based ICGN study. We combined results in a joint meta-analysis (threshold for significance p
Rosenblum JD, Pasternak O, Mitchell MM. Complications of neuroimaging. Handb Clin Neurol. 2014;121:1743–50. doi:10.1016/B978-0-7020-4088-7.00112-7
Modern imaging techniques with computed tomography (CT) and magnetic resonance imaging (MRI) have revolutionized neuroimaging. While eliminating the risks of invasive procedures, new risks must now be considered before ordering neuroimaging. Advanced imaging techniques with CT may pose a risk of significant radiation exposure. Contrast may pose a risk in patients with pre-existing renal failure. MR is associated with risks related to the static magnetic field, to risks associated with the magnetic field gradients, and to risk from contrast media. Neurointervenional techniques allow for nonoperative treatment of a variety of intracranial and spinal pathologies, but with associated risks of embolization, radiation exposure, bleeding complications at the access site and a potential for contrast-related nephropathy.
anchez-Ferrero GV-S, Seabra J e, Rodriguez-Leor O, Serrano-Vida A, andez SA-F, Palencia C esar, andez MM \in-F, Sanches J. Gamma mixture classifier for plaque detection in intravascular ultrasonic images. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(1):44–61. doi:10.1109/TUFFC.2014.6689775
Carotid and coronary vascular incidents are mostly caused by vulnerable plaques. Detection and characterization of vulnerable plaques are important for early disease diagnosis and treatment. For this purpose, the echomorphology and composition have been studied. Several distributions have been used to describe ultrasonic data depending on tissues, acquisition conditions, and equipment. Among them, the Rayleigh distribution is a one-parameter model used to describe the raw envelope RF ultrasound signal for its simplicity, whereas the Nakagami distribution (a generalization of the Rayleigh distribution) is the two-parameter model which is commonly accepted. However, it fails to describe B-mode images or Cartesian interpolated or subsampled RF images because linear filtering changes the statistics of the signal. In this work, a gamma mixture model (GMM) is proposed to describe the subsampled/interpolated RF images and it is shown that the parameters and coefficients of the mixture are useful descriptors of speckle pattern for different types of plaque tissues. This new model outperforms recently proposed probabilistic and textural methods with respect to plaque description and characterization of echogenic contents. Classification results provide an overall accuracy of 86.56% for four classes and 95.16% for three classes. These results evidence the classifier usefulness for plaque characterization. Additionally, the classifier provides probability maps according to each tissue type, which can be displayed for inspecting local tissue composition, or used for automatic filtering and segmentation.
Egger K, von Hohenberg CC, Schocke MF, Guttmann CRG, Wassermann D, Wigand MC, Nachbauer W, Kremser C, Sturm B, Scheiber-Mojdehkar B, et al. White matter changes in patients with friedreich ataxia after treatment with erythropoietin. J Neuroimaging. 2014;24(5):504–8. doi:10.1111/jon.12050
BACKGROUND AND PURPOSE: Erythropoietin (EPO) has received growing attention because of its neuroregenerative properties. Preclinical and clinical evidence supports its therapeutic potential in brain conditions like stroke, multiple sclerosis, and schizophrenia. Also, in Friedreich ataxia, clinical improvement after EPO therapy was shown. The aim of this study was to assess possible therapy-associated brain white matter changes in these patients. METHODS: Nine patients with Friedreich ataxia underwent Diffusion Tensor Imaging (DTI) before and after EPO treatment. Tract-based spatial statistics was used for longitudinal comparison. RESULTS: We detected widespread longitudinal increase in fractional anisotropy and axial diffusivity (D||) in cerebral hemispheres bilaterally (P .05, corrected), while no changes were observed within the cerebellum, medulla oblongata, and pons. CONCLUSIONS: To the best of our knowledge, this is the first DTI study to investigate the effects of EPO in a neurodegenerative disease. Anatomically, the diffusivity changes appear disease unspecific, and their biological underpinnings deserve further study.