Publications by Year: 2011

2011

Mannfolk P, Nilsson M, Hansson H, ahlberg FS, Fransson P, Weibull A, Svensson J, Wirestam R, Olsrud J. Can resting-state functional MRI serve as a complement to task-based mapping of sensorimotor function? A test-retest reliability study in healthy volunteers. J Magn Reson Imaging. 2011;34(3):511–7. doi:10.1002/jmri.22654
PURPOSE: To investigate if resting-state functional MRI (fMRI) reliably can serve as a complement to task-based fMRI for presurgical mapping of the sensorimotor cortex. MATERIALS AND METHODS: Functional data were obtained in 10 healthy volunteers using a 3 Tesla MRI system. Each subject performed five bilateral finger tapping experiments interleaved with five resting-state experiments. Following preprocessing, data from eight volunteers were further analyzed with the general linear model (finger tapping data) and independent component analysis (rest data). Test-retest reliability estimates (hit rate and false alarm rate) for resting-state fMRI activation of the sensorimotor network were compared with the reliability estimates for task-evoked activation of the sensorimotor cortex. The reliability estimates constituted a receiver operating characteristics curve from which the area under the curve (AUC) was calculated. Statistical testing was performed to compare the two groups with respect to reliability. RESULTS: The AUC was generally higher for the task experiments, although median AUC was not significantly different on a group level. Also, the two groups showed comparable levels of within-group variance. CONCLUSION: Test-retest reliability was comparable between resting-state measurements and task-based fMRI, suggesting that presurgical mapping of functional networks can be a supplement to task-based fMRI in cases where patient status excludes task-based fMRI.
Friman O, Hennemuth A, Harloff A, Bock J, Markl M, Peitgen H-O. Probabilistic 4D blood flow tracking and uncertainty estimation. Med Image Anal. 2011;15(5):720–8. doi:10.1016/j.media.2011.06.002
Phase-Contrast (PC) MRI utilizes signal phase shifts resulting from moving spins to measure tissue motion and blood flow. Time-resolved 4D vector fields representing the motion or flow can be derived from the acquired PC MRI images. In cardiovascular PC MRI applications, visualization techniques such as vector glyphs, streamlines, and particle traces are commonly employed for depicting the blood flow. Whereas these techniques indeed provide useful diagnostic information, uncertainty due to noise in the PC-MRI measurements is ignored, which may lend the results a false sense of precision. In this work, the statistical properties of PC MRI flow measurements are investigated and a probabilistic flow tracking method based on sequential Monte Carlo sampling is devised to calculate flow uncertainty maps. The theoretical derivations are validated using simulated data and a number of real PC MRI data sets of the aorta and carotid arteries are used to demonstrate the flow uncertainty mapping technique.
Brown AB, Biederman J, Valera E, Makris N, Doyle A, Whitfield-Gabrieli S, Mick E, Spencer T, Faraone S, Seidman L. Relationship of DAT1 and adult ADHD to task-positive and task-negative working memory networks. Psychiatry Res. 2011;193(1):7–16. doi:10.1016/j.pscychresns.2011.01.006
Alterations in working memory, default-mode network (DMN), and dopamine transporter have all been proposed as endophenotypes for attention-deficit/hyperactivity disorder (ADHD). Despite evidence that these systems are interrelated, their relationship to each other has never been studied in the context of ADHD. In order to understand the potential mediating effects of task-positive and task-negative networks between DAT1 and diagnosis, we tested effects of genotype and diagnosis on regions of positive and negative BOLD signal change (as measured with fMRI) in 53 adults with ADHD and 38 control subjects during a working memory task. We also examined the relationship of these responses to ADHD symptoms. Our results yielded four principal findings: 1) association of the DAT1 9R allele with adult ADHD, 2) marginal DAT1 association with task-related suppression in left medial PFC, 3) marginal genotype×diagnosis interaction in the dorsal anterior cingulate cortex, and 4) correlation of DMN suppression to ADHD symptoms. These findings replicate the association of the 9R allele with adult ADHD. Further, we show that DMN suppression is likely linked to DAT1 and to severity of inattention in ADHD. DMN may therefore be a target of DAT1 effects, and lie on the path between the gene and inattention in ADHD.
Seidman LJ, Biederman J, Liang L, Valera EM, Monuteaux MC, Brown A, Kaiser J, Spencer T, Faraone S V, Makris N. Gray matter alterations in adults with attention-deficit/hyperactivity disorder identified by voxel based morphometry. Biol Psychiatry. 2011;69(9):857–66. doi:10.1016/j.biopsych.2010.09.053
BACKGROUND: Gray and white matter volume deficits have been reported in many structural magnetic resonance imaging (MRI) studies of children with attention-deficit/hyperactivity disorder (ADHD); however, there is a paucity of structural MRI studies of adults with ADHD. This study used voxel based morphometry and applied an a priori region of interest approach based on our previous work, as well as from well-developed neuroanatomical theories of ADHD. METHODS: Seventy-four adults with DSM-IV ADHD and 54 healthy control subjects comparable on age, sex, race, handedness, IQ, reading achievement, frequency of learning disabilities, and whole brain volume had an MRI on a 1.5T Siemens scanner. A priori region of interest hypotheses focused on reduced volumes in ADHD in dorsolateral prefrontal cortex, anterior cingulate cortex, caudate, putamen, inferior parietal lobule, and cerebellum. Analyses were carried out by FSL-VBM 1.1.
Abbs B, Liang L, Makris N, Tsuang M, Seidman LJ, Goldstein JM. Covariance modeling of MRI brain volumes in memory circuitry in schizophrenia: Sex differences are critical. Neuroimage. 2011;56(4):1865–74. doi:10.1016/j.neuroimage.2011.03.079
Women have consistently demonstrated better verbal memory on tests that evaluate immediate and delayed free recall. In patients with schizophrenia, these verbal memory processes are relatively more preserved in women than men. However an understanding of the brain anatomy of the female advantage for verbal memory is still unclear. 29 females and 59 males with schizophrenia made comparable to 21 female and 27 male healthy volunteers were scanned using structural magnetic resonance imaging (sMRI) in order to assess volumes of regions across the entire brain. Sex differences within and between groups in the covariance structure of memory circuitry regions were evaluated using a novel approach to covariance analysis (the Box M Test). Brain areas of interest included the prefrontal cortex (PFC), inferior parietal lobule (iPAR), anterior cingulate gyrus (ACG), parahippocampus, and hippocampus (HIPP). Results showed significant differences in the covariance matrices of females and males with schizophrenia compared with their healthy counterparts, in particular the relationships between iPAR-PFC, iPAR-ACG, and HIPP-PFC. Sex differences in the iPAR-PFC relationship were significantly associated with sex differences in verbal memory performance. In control women, but not in men ACG volume correlated strongly with memory performance. In schizophrenia, ACG volume was reduced in females, but not in men, relative to controls. Findings suggest that the relationship between iPAR and PFC is particularly important for understanding the relative preservation of verbal memory processing in females with schizophrenia and may compensate for ACG volume reductions. These results illustrate the utility of a unique covariance structure modeling approach that yields important new knowledge for understanding the nature of schizophrenia.
Thermenos HW, Makris N, Whitfield-Gabrieli S, Brown AB, Giuliano AJ, Lee EH, Faraone S V, Tsuang MT, Seidman LJ. A functional MRI study of working memory in adolescents and young adults at genetic risk for bipolar disorder: preliminary findings. Bipolar Disord. 2011;13(3):272–86. doi:10.1111/j.1399-5618.2011.00920.x
OBJECTIVES: In this report, we seek to (i) identify a potential neuroimaging endophenotype for bipolar disorder (BD) in emotion regulatory and autonomic circuitry in young first-degree relatives of persons with BD; and (ii) replicate our previous work identifying the functional neuroanatomy of working memory (WM) in an older sample of relatives of persons with BD. METHODS: Ten adolescent and young adult (age 13-24) unmedicated, non-ill, first-degree relatives of persons with BD (RELS) and 10 demographically comparable healthy controls performed a 2-back WM task and a 0-back control task during functional magnetic resonance imaging (fMRI). fMRI data were collected on a 1.5 Tesla scanner and analyzed using SPM-2. Mood was assessed on the day of scanning. RESULTS: The groups did not differ on any demographic, neuropsychological, or in-scanner task performance variables. In contrast to controls, RELS showed (i) weak task-dependent modulation activity in the cerebellar vermis (CV), insula, and amygdala/parahippocampal region, and (ii) exaggerated modulation of activity in the frontopolar cortex and brainstem, even after controlling for potential confounders. Many of the group differences were driven by differences in activity in the low-level (0-back) baseline task. CONCLUSIONS: Young, unmedicated RELS exhibited altered task-dependent modulation of frontopolar, CV, and insula activity during WM, especially during the low-level (0-back) baseline task. Results are largely consistent with our initial study of older adult RELS, suggesting these alterations may represent biomarkers of genetic risk for BD.
Börjesson J, Latifi A, Friman O, Beckman MO, Oldner A, Labruto F. Accuracy of low-dose chest CT in intensive care patients. Emerg Radiol. 2011;18(1):17–21. doi:10.1007/s10140-010-0895-6
In this prospective study, we set out to determine the accuracy of low-dose computerized tomography (LDCT) of the chest in intensive care patients. Fifteen adult intensive care patients were examined with a standard-dose CT protocol (average radiation dose = 6.7 mSv), chosen as the reference standard, followed by a non-contrast-enhanced LDCT protocol (average radiation dose = 0.59 mSv). Each examination was then read by two separate groups of radiologists blinded to both the purpose and the protocol of the study. In the small group examined, the results showed 100% accuracy in the diagnosis of pneumomediastinum, pericardial effusion, and pleural effusion, and 90% accuracy in the diagnosis of pneumothorax and consolidation. There were no false-positive findings, and the few false-negative findings were unlikely to lead to any clinical interventions. Our examination protocol, while providing a tenfold reduction of the radiation dose, nevertheless remained accurate enough for resolving certain clinical questions common in the intensive care patient. Thus, we suggest that protocols aimed at reducing the radiation dose in chest CT could be applied to the intensive care patient for resolving some specific questions, without compromising the diagnostic yield of the examinations.
Whitford TJ, Mathalon DH, Shenton ME, Roach BJ, Bammer R, Adcock RA, Bouix S, Kubicki M, De Siebenthal J, Rausch AC, et al. Electrophysiological and diffusion tensor imaging evidence of delayed corollary discharges in patients with schizophrenia. Psychol Med. 2011;41(5):959–69. doi:10.1017/S0033291710001376
BACKGROUND: Patients with schizophrenia (SZ) characteristically exhibit supranormal levels of cortical activity to self-induced sensory stimuli, ostensibly because of abnormalities in the neural signals (corollary discharges, CDs) normatively involved in suppressing the sensory consequences of self-generated actions. The nature of these abnormalities is unknown. This study investigated whether SZ patients experience CDs that are abnormally delayed in their arrival at the sensory cortex. METHOD: Twenty-one patients with SZ and 25 matched control participants underwent electroencephalography (EEG). Participants’ level of cortical suppression was calculated as the amplitude of the N1 component evoked by a button press-elicited auditory stimulus, subtracted from the N1 amplitude evoked by the same stimulus presented passively. In the three experimental conditions, the auditory stimulus was delivered 0, 50 or 100 ms subsequent to the button-press. Fifteen SZ patients and 17 healthy controls (HCs) also underwent diffusion tensor imaging (DTI), and the fractional anisotropy (FA) of participants’ arcuate fasciculus was used to predict their level of cortical suppression in the three conditions. RESULTS: While the SZ patients exhibited subnormal N1 suppression to undelayed, self-generated auditory stimuli, these deficits were eliminated by imposing a 50-ms, but not a 100-ms, delay between the button-press and the evoked stimulus. Furthermore, the extent to which the 50-ms delay normalized a patient’s level of N1 suppression was linearly related to the FA of their arcuate fasciculus. CONCLUSIONS: These data suggest that SZ patients experience temporally delayed CDs to self-generated auditory stimuli, putatively because of structural damage to the white-matter (WM) fasciculus connecting the sites of discharge initiation and destination.