Publications by Year: 2011

2011

Whitford TJ, Kubicki M, Ghorashi S, Schneiderman JS, Hawley KJ, McCarley RW, Shenton ME, Spencer KM. Predicting inter-hemispheric transfer time from the diffusion properties of the corpus callosum in healthy individuals and schizophrenia patients: a combined ERP and DTI study. Neuroimage. 2011;54(3):2318–29. doi:10.1016/j.neuroimage.2010.10.048
BACKGROUND: Several theories of schizophrenia have emphasized the role of aberrant neural timing in the etiology of the disease, possibly as a consequence of conduction delays caused by structural damage to the white-matter fasciculi. Consistent with this theory, increased inter-hemispheric transmission times (IHTTs) to unilaterally-presented visual stimuli have been reported in patients with schizophrenia. The present study investigated whether or not these IHTT abnormalities could be underpinned by structural damage to the visual fibers of the corpus callosum. METHODS: Thirty three schizophrenia patients and 22 matched controls underwent Event Related Potential (ERP) recording, and a subset of 19 patients and 16 controls also underwent 3T Diffusion-Tensor Imaging (DTI). Unilateral visual stimuli (squares, 2×2 degrees) were presented 6 degrees lateral to either side of a central fixation point. IHTTs (ipsilateral minus contralateral latencies) were calculated for the P1 and N1 components at parietal-occipital sites in current source density-transformed ERPs. The visual fibers of the corpus callosum were extracted with streamline tractography and the diffusion metrics of Fractional Anisotropy (FA) and Mode calculated. RESULTS: While both subject groups exhibited highly significant IHTTs across a range of posterior electrode pairs, and significantly shorter IHTTs from left-to-right hemisphere than vice versa, no significant groupwise differences in IHTT were observed. However, participants’ IHTTs were linearly related to their FA and Mode, with longer IHTTs being associated with lower FA and more prolate diffusion ellipsoids. CONCLUSIONS: These results suggest that IHTTs are estimable from DTI measures of white matter integrity. In light of the range of diffusion abnormalities that have been reported in patients with schizophrenia, particularly in frontal fasciculi, these results support the conjecture that schizophrenia is associated with abnormalities in neural timing.
Sigfridsson A, Haraldsson H, Ebbers T, Knutsson H, Sakuma H. In vivo SNR in DENSE MRI; temporal and regional effects of field strength, receiver coil sensitivity and flip angle strategies. Magn Reson Imaging. 2011;29(2):202–8. doi:10.1016/j.mri.2010.08.016
AIM: The influences on the signal-to-noise ratio (SNR) of Displacement ENcoding with Stimulated Echoes (DENSE) MRI of field strength, receiver coil sensitivity and choice of flip angle strategy have been previously investigated individually. In this study, all of these parameters have been investigated in the same setting, and a mutual comparison of their impact on SNR is presented. MATERIALS AND METHODS: Ten healthy volunteers were imaged in a 1.5 T and a 3 T MRI system, using standard five- or six-channel cardiac coils as well as 32-channel coils, with four different excitation patterns. Variation of spatial coil sensitivity was assessed by regional SNR analysis. RESULTS: SNR ranging from 2.8 to 30.5 was found depending on the combination of excitation patterns, coil sensitivity and field strength. The SNR at 3 T was 53±26% higher than at 1.5 T (P
Golby AJ, Kindlmann G, Norton I, Yarmarkovich A, Pieper S, Kikinis R. Interactive diffusion tensor tractography visualization for neurosurgical planning. Neurosurgery. 2011;68(2):496–505. doi:10.1227/NEU.0b013e3182061ebb
BACKGROUND: Diffusion tensor imaging (DTI) infers the trajectory and location of large white matter tracts by measuring the anisotropic diffusion of water. DTI data may then be analyzed and presented as tractography for visualization of the tracts in 3 dimensions. Despite the important information contained in tractography images, usefulness for neurosurgical planning has been limited by the inability to define which are critical structures within the mass of demonstrated fibers and to clarify their relationship to the tumor. OBJECTIVE: To develop a method to allow the interactive querying of tractography data sets for surgical planning and to provide a working software package for the research community. METHODS: The tool was implemented within an open source software project. Echo-planar DTI at 3 T was performed on 5 patients, followed by tensor calculation. Software was developed that allowed the placement of a dynamic seed point for local selection of fibers and for fiber display around a segmented structure, both with tunable parameters. A neurosurgeon was trained in the use of software in 1 hour and used it to review cases. RESULTS: Tracts near tumor and critical structures were interactively visualized in 3 dimensions to determine spatial relationships to lesion. Tracts were selected using 3 methods: anatomical and functional magnetic resonance imaging-defined regions of interest, distance from the segmented tumor volume, and dynamic seed-point spheres. CONCLUSION: Interactive tractography successfully enabled inspection of white matter structures that were in proximity to lesions, critical structures, and functional cortical areas, allowing the surgeon to explore the relationships between them.
Ross JC, Cook AM, Stewart GL, Fahy BG. Acute intrathecal baclofen withdrawal: a brief review of treatment options. Neurocrit Care. 2011;14(1):103–8. doi:10.1007/s12028-010-9422-6
BACKGROUND: Acute baclofen toxicity and withdrawal can present with a constellation of symptoms making differentiation between these two entities and other potential diagnoses challenging. Baclofen withdrawal is associated with numerous complications which may require neurocritical care expertise such as respiratory failure, refractory seizures, delirium, and blood pressure lability. METHODS: Case report and literature review. RESULTS: This case report discusses a case of intrathecal baclofen (ITB) withdrawal, focusing on the differential diagnosis for acute baclofen withdrawal and reviews the various options that exist to treat the symptoms of acute baclofen withdrawal such as benzodiazepines, propofol, skeletal muscle relaxants, and tizanidine. CONCLUSIONS: Critical care practitioners should be prepared to treat this potentially devastating and often refractory complication of ITB therapy.
Koerte I, Pelavin P, Kirmess B, Fuchs T, Berweck S, Laubender RP, Borggraefe I, Schroeder S, Danek A, Rummeny C, et al. Anisotropy of transcallosal motor fibres indicates functional impairment in children with periventricular leukomalacia. Dev Med Child Neurol. 2011;53(2):179–86. doi:10.1111/j.1469-8749.2010.03840.x
AIM: In children with bilateral spastic cerebral palsy (CP), periventricular leukomalacia (PVL) is commonly identified on magnetic resonance imaging. We characterized this white matter condition by examining callosal microstructure, interhemispheric inhibitory competence (IIC), and mirror movements. METHOD: We examined seven children (age range 11y 9mo-17y 9mo, median age 15y 10mo, four females, three males) with bilateral spastic CP/PVL (Gross Motor Function Classification System level I or II, Manual Ability Classification System level I) and 12 age-matched controls (age range 11y 7mo-17y 1mo, median age 15y 6mo, seven females, five males). Fractional anisotropy of the transcallosal motor fibres (TCMF) and the corticospinal tract (CST) of both sides were calculated. The parameters of IIC (transcranial magnetic stimulation) and mirror movements were measured using a standardized clinical examination and a computer-based hand motor test. RESULTS: Fractional anisotropy was lower in children with bilateral spastic CP/PVL regarding the TCMF, but not the left or right CST. Resting motor threshold was elevated in children with bilateral spastic CP/PVL whereas measures of IIC tended to be lower. Mirror movements were markedly elevated in bilateral spastic CP/PVL. INTERPRETATION: This study provides new information on different aspects of motor function in children with bilateral spastic CP/PVL. Decreased fractional anisotropy of TCMF is consistent with impairment of hand motor function in children with bilateral spastic CP/PVL. The previously overlooked microstructure of the TCMF may serve as a potential indicator for hand motor function in patients with bilateral spastic CP/PVL.
Spencer KM, Nestor PG, Valdman O, Niznikiewicz MA, Shenton ME, McCarley RW. Enhanced facilitation of spatial attention in schizophrenia. Neuropsychology. 2011;25(1):76–85. doi:10.1037/a0020779
OBJECTIVE: While attentional functions are usually found to be impaired in schizophrenia, a review of the literature on the orienting of spatial attention in schizophrenia suggested that voluntary attentional orienting in response to a valid cue might be paradoxically enhanced. We tested this hypothesis with orienting tasks involving the cued detection of a laterally presented target stimulus. METHOD: Subjects were chronic schizophrenia patients (SZ) and matched healthy control subjects (HC). In Experiment 1 (15 SZ, 16 HC), cues were endogenous (arrows) and could be valid (100% predictive) or neutral with respect to the subsequent target position. In Experiment 2 (16 SZ, 16 HC), subjects performed a standard orienting task with unpredictive exogenous cues (brightening of the target boxes). RESULTS: In Experiment 1, SZ showed a larger attentional facilitation effect on reaction time than HC. In Experiment 2, no clear sign of enhanced attentional facilitation was found in SZ. CONCLUSIONS: The voluntary, facilitatory shifting of spatial attention may be relatively enhanced in individuals with schizophrenia in comparison to healthy individuals. This effect bears resemblance to other relative enhancements of information processing in schizophrenia such as saccade speed and semantic priming.
Schwenke M, Hennemuth A, Fischer B, Friman O. Blood flow computation in phase-contrast MRI by minimal paths in anisotropic media. Med Image Comput Comput Assist Interv. 2011;14(Pt 1):436–43.
In this paper, anisotropic Fast Marching is employed to compute blood flow trajectories as minimal paths in 3D phase-contrast MRI images. Uncertainty in the estimated blood flow vectors is incorporated in a tensor which is used as metric for the anisotropic Fast Marching. A flow connectivity distribution is computed simultaneously to the Fast Marching. Based on the connectivity distribution the most likely flow trajectories can be identified. Results are presented for several PC MRI data sets and the capability of the method to indicate uncertainty of the flow trajectories is shown.
Iacono MI, Makris N, Mainardi L, Gale J, van der Kouwe A, Mareyam A, Polimeni JR, Wald LL, Fischl B, Eskandar EN, et al. Atlas-based segmentation for globus pallidus internus targeting on low-resolution MRI. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5706–9. doi:10.1109/IEMBS.2011.6091381
In this paper we report a method to automatically segment the internal part of globus pallidus (GPi) on the pre-operative low-resolution magnetic resonance images (MRIs) of patients affected by Parkinson’s disease. Herein we used an ultra-high resolution human brain dataset as electronic atlas of reference on which we segmented the GPi. First, we registered the ultra-high resolution dataset on the low-resolution dataset using a landmarks-based rigid registration. Then an affine and a non-rigid surface-based registration guided by the structures that surround the target was applied in order to propagate the labels of the GPi on the low-resolution un-segmented dataset and to accurately outline the target. The mapping of the atlas on the low-resolution MRI provided a highly accurate anatomical detail that can be useful for localizing the target.
Özarslan E, Komlosh ME, Lizak MJ, Horkay F, Basser PJ. Double pulsed field gradient (double-PFG) MR imaging (MRI) as a means to measure the size of plant cells. Magn Reson Chem. 2011;49 Suppl 1:79–84. doi:10.1002/mrc.2797
Measurement of diffusion in porous materials and biological tissues with the pulsed field gradient (PFG) MR techniques has proven useful in characterizing the microstructure of such specimens noninvasively. A natural extension of the traditional PFG technique comprises multiple pairs of diffusion gradients. This approach has been shown to provide the ability to characterize anisotropy at different length scales without the need to employ very strong gradients. In this work, the double-PFG imaging technique was used on a specimen involving a series of glass capillary arrays with different diameters. The experiments on the phantom demonstrated the ability to create a quantitative and accurate map of pore sizes. The same technique was subsequently employed to image a celery stalk. A diffusion tensor image (DTI) of the same specimen was instrumental in accurately delineating the regions of vascular tissue and determining the local orientation of cells. This orientation information was incorporated into a theoretical double-PFG framework and the technique was employed to estimate the cell size in the vascular bundles of the celery stalk. The findings suggest that the double-PFG MRI framework could provide important new information regarding the microstructure of many plants and other food products.
Agam Y, Hämäläinen MS, Lee AKC, Dyckman KA, Friedman JS, Isom M, Makris N, Manoach DS. Multimodal neuroimaging dissociates hemodynamic and electrophysiological correlates of error processing. Proc Natl Acad Sci U S A. 2011;108(42):17556–61. doi:10.1073/pnas.1103475108
Recognizing errors and adjusting responses are fundamental to adaptive behavior. The error-related negativity (ERN) and error-related functional MRI (fMRI) activation of the dorsal anterior cingulate cortex (dACC) index these processes and are thought to reflect the same neural mechanism. In the present study, we evaluated this hypothesis. Although errors elicited robust dACC activation using fMRI, combined electroencephalography and magnetoencephalography data localized the ERN to the posterior cingulate cortex (PCC). ERN amplitude correlated with fMRI activation in both the PCC and dACC, and these two regions showed coordinated activity based on functional connectivity MRI. Finally, increased microstructural integrity of the posterior cingulum bundle, as measured by diffusion tensor imaging, predicted faster error correction. These findings suggest that the PCC generates the ERN and communicates with the dACC to subserve error processing. They challenge current models that view fMRI activation of the dACC as the hemodynamic reflection of the ERN.