Publications by Year: 2009

2009

Jeong B, Wible CG, Hashimoto R- ichiro, Kubicki M. Functional and anatomical connectivity abnormalities in left inferior frontal gyrus in schizophrenia. Hum Brain Mapp. 2009;30(12):4138–51. doi:10.1002/hbm.20835
Functional studies in schizophrenia demonstrate prominent abnormalities within the left inferior frontal gyrus (IFG) and also suggest the functional connectivity abnormalities in language network including left IFG and superior temporal gyrus during semantic processing. White matter connections between regions involved in the semantic network have also been indicated in schizophrenia. However, an association between functional and anatomical connectivity disruptions within the semantic network in schizophrenia has not been established. Functional (using levels of processing paradigm) as well as diffusion tensor imaging data from 10 controls and 10 chronic schizophrenics were acquired and analyzed. First, semantic encoding specific activation was estimated, showing decreased activation within the left IFG in schizophrenia. Second, functional time series were extracted from this area, and left IFG specific functional connectivity maps were produced for each subject. In an independent analysis, tract-based spatial statistics (TBSS) was used to compare fractional anisotropy (FA) values between groups, and to correlate these values with functional connectivity maps. Schizophrenia patients showed weaker functional connectivity within the language network that includes left IFG and left superior temporal sulcus/middle temporal gyrus. FA was reduced in several white matter regions including left inferior frontal and left internal capsule. Finally, left inferior frontal white matter FA was positively correlated with connectivity measures of the semantic network in schizophrenics, but not in controls. Our results indicate an association between anatomical and functional connectivity abnormalities within the semantic network in schizophrenia, suggesting further that the functional abnormalities observed in this disorder might be directly related to white matter disruptions.
Sabuncu MR, Balci SK, Shenton ME, Golland P. Image-driven population analysis through mixture modeling. IEEE Trans Med Imaging. 2009;28(9):1473–87. doi:10.1109/TMI.2009.2017942
We present iCluster, a fast and efficient algorithm that clusters a set of images while co-registering them using a parameterized, nonlinear transformation model. The output of the algorithm is a small number of template images that represent different modes in a population. This is in contrast with traditional, hypothesis-driven computational anatomy approaches that assume a single template to construct an atlas. We derive the algorithm based on a generative model of an image population as a mixture of deformable template images. We validate and explore our method in four experiments. In the first experiment, we use synthetic data to explore the behavior of the algorithm and inform a design choice on parameter settings. In the second experiment, we demonstrate the utility of having multiple atlases for the application of localizing temporal lobe brain structures in a pool of subjects that contains healthy controls and schizophrenia patients. Next, we employ iCluster to partition a data set of 415 whole brain MR volumes of subjects aged 18 through 96 years into three anatomical subgroups. Our analysis suggests that these subgroups mainly correspond to age groups. The templates reveal significant structural differences across these age groups that confirm previous findings in aging research. In the final experiment, we run iCluster on a group of 15 patients with dementia and 15 age-matched healthy controls. The algorithm produces two modes, one of which contains dementia patients only. These results suggest that the algorithm can be used to discover subpopulations that correspond to interesting structural or functional "modes."
Spencer KM, Niznikiewicz MA, Nestor PG, Shenton ME, McCarley RW. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia. BMC Neurosci. 2009;10:85. doi:10.1186/1471-2202-10-85
BACKGROUND: Oscillatory electroencephalogram (EEG) abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR) generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC) and 18 chronic schizophrenia patients (SZ) listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. RESULTS: Phase locking factor (PLF) and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. CONCLUSION: These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by an increased propensity for high-frequency synchronization in modality-specific cortical areas.
BACKGROUND: Various osteotomy techniques have been developed to correct the deformity caused by slipped capital femoral epiphysis (SCFE) and compared by their clinical outcomes. The aim of the presented study was to compare an intertrochanteric uniplanar flexion osteotomy with a multiplanar osteotomy by their ability to improve postoperative range of motion as measured by simulation of computed tomographic data in patients with SCFE. METHODS: We examined 19 patients with moderate or severe SCFE as classified based on slippage angle. A computer program for the simulation of movement and osteotomy developed in our laboratory was used for study execution. According to a 3-dimensional reconstruction of the computed tomographic data, the physiological range was determined by flexion, abduction, and internal rotation. The multiplanar osteotomy was compared with the uniplanar flexion osteotomy. Both intertrochanteric osteotomy techniques were simulated, and the improvements of the movement range were assessed and compared. RESULTS: The mean slipping and thus correction angles measured were 25 degrees (range, 8-46 degrees) inferior and 54 degrees (range, 32-78 degrees) posterior. After the simulation of multiplanar osteotomy, the virtually measured ranges of motion as determined by bone-to-bone contact were 61 degrees for flexion, 57 degrees for abduction, and 66 degrees for internal rotation. The simulation of the uniplanar flexion osteotomy achieved a flexion of 63 degrees, an abduction of 36 degrees, and an internal rotation of 54 degrees. CONCLUSIONS: Apart from abduction, the improvement in the range of motion by a uniplanar flexion osteotomy is comparable with that of the multiplanar osteotomy. However, the improvement in flexion for the simulation of both techniques is not satisfactory with regard to the requirements of normal everyday life, in contrast to abduction and internal rotation. LEVEL OF EVIDENCE: Level III, Retrospective comparative study.
Voglmaier MM, Seidman LJ, Niznikiewicz MA, Madan A, Dickey CC, Shenton ME, McCarley RW. Dichotic listening in schizotypal personality disorder: evidence for gender and laterality effects. Schizophr Res. 2009;115(2-3):290–2. doi:10.1016/j.schres.2009.04.028
Verbal dichotic listening performance was examined in 42 right-handed men and women with DSM-IV-defined schizotypal personality disorder (SPD) and 68 right-handed controls. As expected, both male and female control groups showed a right ear advantage on a verbal dichotic listening task. Although SPD subjects in general had lower accuracy scores than comparison subjects, only male SPD subjects showed an abnormal left ear advantage that was specifically due to deficient right ear performance. The results suggest that left hemisphere temporal lobe structures may be particularly involved in male, but not female, SPD.
Aslund I, Nowacka A, Nilsson M, Topgaard D. Filter-exchange PGSE NMR determination of cell membrane permeability. J Magn Reson. 2009;200(2):291–5. doi:10.1016/j.jmr.2009.07.015
A new PGSE NMR sequence is introduced for measuring diffusive transport across the plasma membrane of living cells. A "diffusion filter" and a variable mixing time precedes a standard PGSE block for diffusion encoding of the NMR signal. The filter is a PGSE block optimized for selectively removing the magnetization of the extracellular water. With increasing mixing time the intra- and extracellular components approach their equilibrium fractional populations. The rate of exchange can be measured using only a few minutes of instrument time. Water exchange over the plasma membrane of starved yeast cells is studied in the temperature range +5 to +32 degrees C.
Onitsuka T, Spencer KM, Lucia LC, Shenton ME, McCarley RW, Niznikiewicz MA. Abnormal asymmetry of the face n170 repetition effect in male patients with chronic schizophrenia. Brain Imaging Behav. 2009;3(3):240–5. doi:10.1007/s11682-009-9066-3
The N170 face repetition effect has been proposed to reflect early identity processing that underlies the acquisition of familiarity for novel faces. It was reported that the N170 face repetition effect was lateralized to the right hemisphere. Since it has been postulated that reduced or reversed brain asymmetry may be importantly related to schizophrenia pathology, the present study examined whether or not male patients with chronic schizophrenia show reduced or reversed asymmetry in the N170 face repetition effect. Seventeen male schizophrenia patients and 13 male healthy controls participated. Event-related potentials were recorded to unrepeated and repeated faces. Patients with schizophrenia showed a bilateral N170 reduction to repeated and unrepeated faces compared to healthy subjects (F[1,28] = 8.01, p = 0.009). Schizophrenia patients showed a significant decrease in N170 amplitude to repeated faces at the left occipitotemporal electrode (t[16] = 2.91, p = 0.01), whereas healthy subjects showed a significant decrease at the right occipitotemporal electrode (t[12] = 2.36, p = 0.04). These results suggest abnormal asymmetry of the N170 face repetition effect in schizophrenia.
Kaban LB, Seldin EB, Kikinis R, Yeshwant K, Padwa BL, Troulis MJ. Clinical application of curvilinear distraction osteogenesis for correction of mandibular deformities. J Oral Maxillofac Surg. 2009;67(5):996–1008. doi:10.1016/j.joms.2009.01.010
PURPOSE: To report the use of a semiburied curvilinear distraction device, with a 3-dimensional (3D) computed tomography treatment planning system, for correction of mandibular deformities. MATERIALS AND METHODS: This was a retrospective evaluation of 13 consecutive patients, with syndromic and nonsyndromic micrognathia, who underwent correction by curvilinear distraction osteogenesis. A 3D computed tomography scan was obtained for each patient and imported into a 3D treatment planning system (Slicer/Osteoplan). Surgical guides were constructed to localize the osteotomy and to drill holes to secure the distractor’s proximal and distal footplates to the mandible. Postoperatively, patients were followed by clinical examination and plain radiographs to ensure the desired vector of movement. At end distraction, when possible, a 3D computed tomography scan was obtained to document the final mandibular position.
Lindig TM, Kumar V, Kikinis R, Pieper S, Schrödl F, Neuhuber WL, Brehmer A. Spiny versus stubby: 3D reconstruction of human myenteric (type I) neurons. Histochem Cell Biol. 2009;131(1):1–12. doi:10.1007/s00418-008-0505-9
We have compared the three-dimensional (3D) morphology of stubby and spiny neurons derived from the human small intestine. After immunohistochemical triple staining for leu-enkephalin (ENK), vasoactive intestinal peptide (VIP) and neurofilament (NF), neurons were selected and scanned based on their immunoreactivity, whether ENK (stubby) or VIP (spiny). For the 3D reconstruction, we focused on confocal data pre-processing with intensity drop correction, non-blind deconvolution, an additional compression procedure in z-direction, and optimizing segmentation reliability. 3D Slicer software enabled a semi-automated segmentation based on an objective threshold (interrater and intrarater reliability, both 0.99). We found that most dendrites of stubby neurons emerged only from the somal circumference, whereas in spiny neurons, they also emerged from the luminal somal surface. In most neurons, the nucleus was positioned abluminally in its soma. The volumes of spiny neurons were significantly larger than those of stubby neurons (total mean of stubbies 806 +/- 128 mum(3), of spinies 2,316 +/- 545 mum(3)), and spiny neurons had more dendrites (26.3 vs. 11.3). The ratios of somal versus dendritic volumes were 1:1.2 in spiny and 1:0.3 in stubby neurons. In conclusion, 3D reconstruction revealed new differences between stubby and spiny neurons and allowed estimations of volumetric data of these neuron populations.
Eklund A, Ohlsson H, Andersson M, Rydell J, Ynnerman A, Knutsson H. Using real-time fMRI to control a dynamical system by brain activity classification. Med Image Comput Comput Assist Interv. 2009;12(Pt 1):1000–8.
We present a method for controlling a dynamical system using real-time fMRI. The objective for the subject in the MR scanner is to balance an inverted pendulum by activating the left or right hand or resting. The brain activity is classified each second by a neural network and the classification is sent to a pendulum simulator to change the force applied to the pendulum. The state of the inverted pendulum is shown to the subject in a pair of VR goggles. The subject was able to balance the inverted pendulum during several minutes, both with real activity and imagined activity. In each classification 9000 brain voxels were used and the response time for the system to detect a change of activity was on average 2-4 seconds. The developments here have a potential to aid people with communication disabilities, such as locked in people. Another future potential application can be to serve as a tool for stroke and Parkinson patients to be able to train the damaged brain area and get real-time feedback for more efficient training.