Publications by Year: 2005

2005

Walhovd KB, Fjell AM, Reinvang I, Lundervold A, Dale AM, Eilertsen DE, Quinn BT, Salat D, Makris N, Fischl B. Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiol Aging. 2005;26(9):1261–70. doi:10.1016/j.neurobiolaging.2005.05.020
The effect of age was investigated in and compared across 16 automatically segmented brain measures: cortical gray matter, cerebral white matter, hippocampus, amygdala, thalamus, the accumbens area, caudate, putamen, pallidum, brainstem, cerebellar cortex, cerebellar white matter, the lateral ventricle, the inferior lateral ventricle, and the 3rd and 4th ventricle. Significant age effects were found for all volumes except pallidum and the 4th ventricle. Heterogeneous age responses were seen in that age relationships for cortex, amygdala, thalamus, the accumbens area, and caudate were linear, while cerebral white matter, hippocampus, brainstem, cerebellar white, and gray matter, as well as volume of the lateral, inferior lateral, and 3rd ventricles showed curvilinear relationships with age. In general, the findings point to global and large effects of age across brain volumes.
Goldstein JM, Jerram M, Poldrack R, Ahern T, Kennedy DN, Seidman LJ, Makris N. Hormonal cycle modulates arousal circuitry in women using functional magnetic resonance imaging. J Neurosci. 2005;25(40):9309–16. doi:10.1523/JNEUROSCI.2239-05.2005
Sex-specific behaviors are in part based on hormonal regulation of brain physiology. This functional magnetic resonance imaging (fMRI) study demonstrated significant differences in activation of hypothalamic-pituitary-adrenal (HPA) circuitry in adult women with attenuation during ovulation and increased activation during early follicular phase. Twelve normal premenopausal women were scanned twice during the early follicular menstrual cycle phase compared with late follicular/midcycle, using negative valence/high arousal versus neutral visual stimuli, validated by concomitant electrodermal activity (EDA). Significantly greater magnitude of blood oxygenation level-dependent signal changes were found during early follicular compared with midcycle timing in central amygdala, paraventricular and ventromedial hypothalamic nuclei, hippocampus, orbitofrontal cortex (OFC), anterior cingulate gyrus (aCING), and peripeduncular nucleus of the brainstem, a network of regions implicated in the stress response. Arousal (EDA) correlated positively with brain activity in amygdala, OFC, and aCING during midcycle but not in early follicular, suggesting less cortical control of amygdala during early follicular, when arousal was increased. This is the first evidence suggesting that estrogen may likely attenuate arousal in women via cortical-subcortical control within HPA circuitry. Findings have important implications for normal sex-specific physiological functioning and may contribute to understanding higher rates of mood and anxiety disorders in women and differential sensitivity to trauma than men.
Seidman LJ, Valera EM, Makris N. Structural brain imaging of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57(11):1263–72. doi:10.1016/j.biopsych.2004.11.019
Many investigators have hypothesized that attention-deficit/hyperactivity disorder (ADHD) involves structural and functional brain abnormalities in frontal-striatal circuitry. Although our review suggests that there is substantial support for this hypothesis, a growing literature demonstrates widespread abnormalities affecting other cortical regions and the cerebellum. Because there is only one report studying adults with ADHD, this summary is based on children. A key limitation of the literature is that most of the studies until recently have been underpowered, using samples of fewer than 20 subjects per group. Nevertheless, these studies are largely consistent with the most comprehensive and definitive study (Castellanos et al 2002). Moreover, studies differ in the degree to which they address the influence of medications, comorbidities, or gender, and most have not addressed potentially important sources of heterogeneity such as family history of ADHD, subtype, or perinatal complications. Despite these limitations, a relatively consistent picture has emerged. The most replicated alterations in ADHD in childhood include significantly smaller volumes in the dorsolateral prefrontal cortex, caudate, pallidum, corpus callosum, and cerebellum. These results suggest that the brain is altered in a more widespread manner than has been previously hypothesized. Developmental studies are needed to address the evolution of this brain disorder into adulthood.
Reimer J, Nilsson M, Chamorro MA, Söderman O. The water/n-octane/octyl-beta-D-glucoside/1-octanol system: phase diagrams and phase properties. J Colloid Interface Sci. 2005;287(1):326–32. doi:10.1016/j.jcis.2005.01.103
The partial phase diagram of D2O/n-octyl-beta-D-alkyl-glucoside(C8G1)/n-octane has been determined at T=25 degrees C. The diagram contains a funnel-shaped micellar phase originating from the water corner of the phase diagram D2O/C8G1 with the stem forming a narrow three-phase region, in which the three phases in equilibrium are two microemulsions of similar composition and an excess oil phase. The microemulsions have been characterized with NMR self-diffusion measurements. At high surfactant concentration and no or low n-octane content, branched micelles exist. As the n-octane content is increased, discrete micelles are formed. Upon further addition of n-octane, the phase separation into two microemulsion phases is induced. Possible mechanisms causing the phase separation are discussed. The phase diagram of D2O/(C8G1)/1-octanol has been determined at 25 degrees C. Ten different phase regions were identified. The phases have been characterized with SAXS and deuterium heavy water NMR, and the swelling of the lamellar phase was investigated with SAXS.
Kubicki M, Park H, Westin C, Nestor PG, Mulkern R V, Maier SE, Niznikiewicz M, Connor EE, Levitt JJ, Frumin M, et al. DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity. Neuroimage. 2005;26(4):1109–18. doi:10.1016/j.neuroimage.2005.03.026
Diffusion tensor imaging (DTI) studies in schizophrenia demonstrate lower anisotropic diffusion within white matter due either to loss of coherence of white matter fiber tracts, to changes in the number and/or density of interconnecting fiber tracts, or to changes in myelination, although methodology as well as localization of such changes differ between studies. The aim of this study is to localize and to specify further DTI abnormalities in schizophrenia by combining DTI with magnetization transfer imaging (MTI), a technique sensitive to myelin and axonal alterations in order to increase specificity of DTI findings. 21 chronic schizophrenics and 26 controls were scanned using Line-Scan-Diffusion-Imaging and T1-weighted techniques with and without a saturation pulse (MT). Diffusion information was used to normalize co-registered maps of fractional anisotropy (FA) and magnetization transfer ratio (MTR) to a study-specific template, using the multi-channel daemon algorithm, designed specifically to deal with multidirectional tensor information. Diffusion anisotropy was decreased in schizophrenia in the following brain regions: the fornix, the corpus callosum, bilaterally in the cingulum bundle, bilaterally in the superior occipito-frontal fasciculus, bilaterally in the internal capsule, in the right inferior occipito-frontal fasciculus and the left arcuate fasciculus. MTR maps demonstrated changes in the corpus callosum, fornix, right internal capsule, and the superior occipito-frontal fasciculus bilaterally; however, no changes were noted in the anterior cingulum bundle, the left internal capsule, the arcuate fasciculus, or inferior occipito-frontal fasciculus. In addition, the right posterior cingulum bundle showed MTR but not FA changes in schizophrenia. These findings suggest that, while some of the diffusion abnormalities in schizophrenia are likely due to abnormal coherence, or organization of the fiber tracts, some of these abnormalities may, in fact, be attributed to or coincide with myelin/axonal disruption.
Makris N, Schlerf JE, Hodge SM, Haselgrove C, Albaugh MD, Seidman LJ, Rauch SL, Harris G, Biederman J, Caviness VS, et al. MRI-based surface-assisted parcellation of human cerebellar cortex: an anatomically specified method with estimate of reliability. Neuroimage. 2005;25(4):1146–60. doi:10.1016/j.neuroimage.2004.12.056
We revisit here a surface assisted parcellation (SAP) system of the human cerebellar cortex originally described in Makris, N., Hodge, S.M., Haselgrove, C., Kennedy, D.N., Dale, A., Fischl, B., Rosen, B.R., Harris, G., Caviness, V.S., Jr., Schmahmann, J.D., 2003. Human cerebellum: surface-assisted cortical parcellation and volumetry with magnetic resonance imaging. J Cogn Neurosci 15, 584-599. This system preserves the topographic and morphologic uniqueness of the individual cerebellum and allows for volumetric analysis and representation of multimodal structural and functional data on the cerebellar cortex. This methodology integrates features of automated routines of the program FreeSurfer as well as semi-automated and manual procedures of the program Cardviews to create 64 cerebellar parcellation units based on fissure information and anatomical landmarks of the cerebellar surface. Using this technique, we undertook the parcellation of ten cerebella by two independent raters. The reliability of the resulting parcellation units (64 total) was high, with an average Intraclass Correlation Coefficient (ICC) of 0.724 in the vermis and 0.853 in the hemispheres. Clusters of parcellation units were then created, based on lobar and connectivity data and functional hypotheses. These 36 clusters, when treated as anatomical units, had an average ICC of 0.933. Whereas the individual units provide a high level of detail and anatomical specificity, the clusters add flexibility to the analysis by providing higher reliability.
Fjell AM, Walhovd KB, Reinvang I, Lundervold A, Dale AM, Quinn BT, Makris N, Fischl B. Age does not increase rate of forgetting over weeks—neuroanatomical volumes and visual memory across the adult life-span. J Int Neuropsychol Soc. 2005;11(1):2–15. doi:10.1017/S1355617705050046
The aim of the study was to investigate whether age affects visual memory retention across extended time intervals. In addition, we wanted to study how memory capabilities across different time intervals are related to the volume of different neuroanatomical structures (right hippocampus, right cortex, right white matter). One test of recognition (CVMT) and one test of recall (Rey-Osterrieth Complex Figure Test) were administered, giving measures of immediate recognition/recall, 20-30 min recognition/recall, and recognition/recall at a mean of 75 days. Volumetric measures of right hemisphere hippocampus, cortex, and white matter were obtained through an automated labelling procedure of MRI recordings. Results did not demonstrate a steeper rate of forgetting for older participants when the retention intervals were increased, indicating that older people have spared ability to retain information in the long-term store. Differences in neuroanatomical volumes could explain up to 36% of the variance in memory performance, but were not significantly related to rates of forgetting. Cortical volume and hippocampal volume were in some cases independent as predictors of memory function. Generally, cortical volume was a better predictor of recognition memory than hippocampal volume, while the 2 structures did not differ in their predictive power of recall abilities. While neuroanatomical volumetric differences can explain some of the differences in memory functioning between younger and older persons, the hippocampus does not seem to be unique in this respect.
Walhovd KB, Fjell AM, Reinvang I, Lundervold A, Fischl B, Salat D, Quinn BT, Makris N, Dale AM. Cortical volume and speed-of-processing are complementary in prediction of performance intelligence. Neuropsychologia. 2005;43(5):704–13. doi:10.1016/j.neuropsychologia.2004.08.006
The rationale for the present study was to investigate the relationship between cortical volume, the latency of the ERP component P3a (as a measure of speed-of-processing), and performance intelligence (not adjusted for age differences). Seventy-one participants aged 20-88 years underwent a visual 3-stimuli oddball ERP task, an MRI-scan, and intelligence testing. P3a latency and cortical volume shared 9% variance (p
Vikgren J, Friman O, Borga M, Boijsen M, Gustavsson S, Ekberg-Jansson A, Bake B, en T. Detection of mild emphysema by computed tomography density measurements. Acta Radiol. 2005;46(3):237–45.
PURPOSE: To assess the ability of a conventional density mask method to detect mild emphysema by high-resolution computed tomography (HRCT); to analyze factors influencing quantification of mild emphysema; and to validate a new algorithm for detection of mild emphysema. MATERIAL AND METHODS: Fifty-five healthy male smokers and 34 never-smokers, 61-62 years of age, were examined. Emphysema was evaluated visually, by the conventional density mask method, and by a new algorithm compensating for the effects of gravity and artifacts due to motion and the reconstruction algorithm. Effects of the reconstruction algorithm, slice thickness, and various threshold levels on the outcome of the density mask area were evaluated. RESULTS: Forty-nine percent of the smokers had mild emphysema. The density mask area was higher the thinner the slice irrespective of the reconstruction algorithm and threshold level. The sharp algorithm resulted in increased density mask area. The new reconstruction algorithm could discriminate between smokers with and those without mild emphysema, whereas the density mask method could not. The diagnostic ability of the new algorithm was dependent on lung level. At about 90% specificity, sensitivity was 65-100% in the apical levels, but low in the rest of the lung. CONCLUSION: The conventional density mask method is inadequate for detecting mild emphysema, while the new algorithm improves the diagnostic ability but is nevertheless still imperfect.
Makris N, Kennedy DN, McInerney S, Sorensen G, Wang R, Caviness VS, Pandya DN. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex. 2005;15(6):854–69. doi:10.1093/cercor/bhh186
Previous research in non-human primates has shown that the superior longitudinal fascicle (SLF), a major intrahemispheric fiber tract, is actually composed of four separate components. In humans, only post-mortem investigations have been available to examine the trajectory of this tract. This study evaluates the hypothesis that the four subcomponents observed in non-human primates can also be found in the human brain using in vivo diffusion tensor magnetic resonance imaging (DT-MRI). The results of our study demonstrated that the four subdivisions could indeed be identified and segmented in humans. SLF I is located in the white matter of the superior parietal and superior frontal lobes and extends to the dorsal premotor and dorsolateral prefrontal regions. SLF II occupies the central core of the white matter above the insula. It extends from the angular gyrus to the caudal-lateral prefrontal regions. SLF III is situated in the white matter of the parietal and frontal opercula and extends from the supramarginal gyrus to the ventral premotor and prefrontal regions. The fourth subdivision of the SLF, the arcuate fascicle, stems from the caudal part of the superior temporal gyrus arches around the caudal end of the Sylvian fissure and extends to the lateral prefrontal cortex along with the SLF II fibers. Since DT-MRI allows the precise definition of only the stem portion of each fiber pathway, the origin and termination of the subdivisions of SLF are extrapolated from the available data in experimental material from non-human primates.