Publications by Year: 2005

2005

Yeshwant K, Seldin EB, Gateno J, Everett P, White CL, Kikinis R, Kaban LB, Troulis MJ. Analysis of skeletal movements in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2005;63(3):335–40. doi:10.1016/j.joms.2004.06.057
PURPOSE: The purpose of this study was to use geometric parameters of movement, calculated from 3-dimensional computed tomography (CT) data, to determine the curvilinear distractor dimensions required to correct mandibular deformities in a series of patients.
Frazier JA, Breeze JL, Makris N, Giuliano AS, Herbert MR, Seidman L, Biederman J, Hodge SM, Dieterich ME, Gerstein ED, et al. Cortical gray matter differences identified by structural magnetic resonance imaging in pediatric bipolar disorder. Bipolar Disord. 2005;7(6):555–69. doi:10.1111/j.1399-5618.2005.00258.x
OBJECTIVE: Few magnetic resonance imaging (MRI) studies of bipolar disorder (BPD) have investigated the entire cerebral cortex. Cortical gray matter (GM) volume deficits have been reported in some studies of adults with BPD; this study assessed the presence of such deficits in children with BPD.
Tramo MJ, Cariani PA, Koh CK, Makris N, Braida LD. Neurophysiology and neuroanatomy of pitch perception: auditory cortex. Ann N Y Acad Sci. 2005;1060:148–74. doi:10.1196/annals.1360.011
We present original results and review literature from the past fifty years that address the role of primate auditory cortex in the following perceptual capacities: (1) the ability to perceive small differences between the pitches of two successive tones; (2) the ability to perceive the sign (i.e., direction) of the pitch difference [higher (+) vs. lower (-)]; and (3) the ability to abstract pitch constancy across changes in stimulus acoustics. Cortical mechanisms mediating pitch perception are discussed with respect to (1) gross and microanatomical distribution; and (2) candidate neural coding schemes. Observations by us and others suggest that (1) frequency-selective neurons in primary auditory cortex (A1) and surrounding fields play a critical role in fine-grained pitch discrimination at the perceptual level; (2) cortical mechanisms that detect pitch differences are neuroanatomically dissociable from those mediating pitch direction discrimination; (3) cortical mechanisms mediating perception of the "missing fundamental frequency (F0)" are neuroanatomically dissociable from those mediating pitch perception when F0 is present; (4) frequency-selective neurons in both right and left A1 contribute to pitch change detection and pitch direction discrimination; (5) frequency-selective neurons in right A1 are necessary for normal pitch direction discrimination; (6) simple codes for pitch that are based on single- and multiunit firing rates of frequency-selective neurons face both a "hyperacuity problem" and a "pitch constancy problem"-that is, frequency discrimination thresholds for pitch change direction and pitch direction discrimination are much smaller than neural tuning curves predict, and firing rate patterns change dramatically under conditions in which pitch percepts remain invariant; (7) cochleotopic organization of frequency-selective neurons bears little if any relevance to perceptual acuity and pitch constancy; and (8) simple temporal codes for pitch capable of accounting for pitches higher than a few hundred hertz have not been found in the auditory cortex. The cortical code for pitch is therefore not likely to be a function of simple rate profiles or synchronous temporal patterns. Studies motivated by interest in the neurophysiology and neuroanatomy of music perception have helped correct longstanding misconceptions about the functional role of auditory cortex in frequency discrimination and pitch perception. Advancing knowledge about the neural coding of pitch is of fundamental importance to the future design of neurobionic therapies for hearing loss.
Jansson J, en KS, Nilsson M, Söderman O, Fritz G, Bergmann A, Glatter O. Small-angle X-ray scattering, light scattering, and NMR study of PEO-PPO-PEO triblock copolymer/cationic surfactant complexes in aqueous solution. J Phys Chem B. 2005;109(15):7073–83. doi:10.1021/jp0468354
The formation of triblock copolymer/surfactant complexes upon mixing a nonionic Pluronic polymer (PEO-PPO-PEO) with a cationic surfactant, hexadecyltrimethylammonium chloride (CTAC), has been studied in dilute aqueous solutions using small-angle X-ray scattering, static and dynamic light scattering, and self-diffusion NMR. The studied copolymer (denoted P123, EO(20)PO(68)EO(20)) forms micelles with a radius of 10 nm and a molecular weight of 7.5 x 10(5), composed of a hydrophobic PPO-rich core of radius 4 nm and a water swollen PEO corona. The P123/CTAC system has been investigated between 1 and 5 wt % P123 and with varying surfactant concentration up to approximately 170 mM CTAC (or a molar ratio n(CTAC)/n(P123) = 19.3). When CTAC is mixed with micellar P123 solutions, two different types of complexes are observed at various CTAC concentrations. At low molar ratios (>/=0.5) a "P123 micelle-CTAC" complex is obtained as the CTAC monomers associate noncooperatively with the P123 micelle, forming a spherical complex. Here, an increased interaction between the complexes with increasing CTAC concentration is observed. The interaction has been investigated by determining the structure factor obtained by using the generalized indirect Fourier transformation (GIFT) method. The interaction between the P123 micelle-CTAC complexes was modeled using the Percus-Yevick closure. For the low molar ratios a small decrease in the apparent molecular weight of the complex was obtained, whereas the major effect was the increase in electrostatic repulsion between the complexes. Between molar ratios 1.9 and 9 two coexisting complexes were found, one P123 micelle-CTAC complex and one "CTAC-P123" complex. The latter one consists of one or a few P123 unimers and a few CTAC monomers. As the CTAC concentration increases above a molar ratio of 9, the P123 micelles are broken up and only the CTAC-P123 complex that is slightly smaller than a CTAC micelle exists. The interaction between the P123/CTAC complexes was modeled with the hypernetted-chain closure using a Yukawa type potential in the GIFT analysis, due to the stronger electrostatic repulsion.
Goldstein JM, Jerram M, Poldrack R, Anagnoson R, Breiter HC, Makris N, Goodman JM, Tsuang MT, Seidman LJ. Sex differences in prefrontal cortical brain activity during fMRI of auditory verbal working memory. Neuropsychology. 2005;19(4):509–19. doi:10.1037/0894-4105.19.4.509
Functional imaging studies of sex effects in working memory (WMEM) are few, despite significant normal sex differences in brain regions implicated in WMEM. This functional MRI (fMRI) study tested for sex effects in an auditory verbal WMEM task in prefrontal, parietal, cingulate, and insula regions. Fourteen healthy, right-handed community subjects were comparable between the sexes, including on WMEM performance. Per statistical parametric mapping, women exhibited greater signal intensity changes in middle, inferior, and orbital prefrontal cortices than men (corrected for multiple comparisons). A test of mixed-sex groups, comparable on performance, showed no significant differences in the hypothesized regions, providing evidence for discriminant validity for significant sex differences. The findings suggest that combining men and women in fMRI studies of cognition may obscure or bias results.
Frazier JA, Chiu S, Breeze JL, Makris N, Lange N, Kennedy DN, Herbert MR, Bent EK, Koneru VK, Dieterich ME, et al. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am J Psychiatry. 2005;162(7):1256–65. doi:10.1176/appi.ajp.162.7.1256
BACKGROUND: Youths with bipolar disorder are ideal for studying illness pathophysiology given their early presentation, lack of extended treatment, and high genetic loading. Adult bipolar disorder MRI studies have focused increasingly on limbic structures and the thalamus because of their role in mood and cognition. On the basis of adult studies, the authors hypothesized a priori that youths with bipolar disorder would have amygdalar, hippocampal, and thalamic volume abnormalities. METHOD: Forty-three youths 6-16 years of age with DSM-IV bipolar disorder (23 male, 20 female) and 20 healthy comparison subjects (12 male, eight female) similar in age and sex underwent structured and clinical interviews, neurological examination, and cognitive testing. Differences in limbic and thalamic brain volumes, on the logarithmic scale, were tested using a two-way (diagnosis and sex) univariate analysis of variance, with total cerebral volume and age controlled. RESULTS: The subjects with bipolar disorder had smaller hippocampal volumes. Further analysis revealed that this effect was driven predominantly by the female bipolar disorder subjects. In addition, both male and female youths with bipolar disorder had significantly smaller cerebral volumes. No significant hemispheric effects were seen. CONCLUSIONS: These findings support the hypothesis that the limbic system, in particular the hippocampus, may be involved in the pathophysiology of pediatric bipolar disorder. While this report may represent the largest MRI study of pediatric bipolar disorder to date, more work is needed to confirm these findings and to determine if they are unique to pediatric bipolar disorder.
McNamee CE, Nilsson M, von Corswant C, Söderman O. Physicochemical characterization of PEG1500-12-acyloxy-stearate micelles and liquid crystalline phases. Langmuir. 2005;21(18):8146–54. doi:10.1021/la0511539
PEG 12-acyloxy-stearates are used as drug delivery carriers that have low cell damage effects. The mechanical and physical properties surrounding these processes and surfactants are still however not known. In this study, the physicochemical micellar properties of PEG 12-acyloxy-stearates were characterized by optical microscopic, nuclear magnetic resonance, and small-angle X-ray scattering techniques. We determined the phase diagrams of the surfactants as a function of surfactant concentration and temperature, the micellar size and shape, and micellar dynamics. We found that each surfactant has a micellar, cubic Im3m, and hexagonal phase. The aggregation number in the discrete cubic phase, as determined by small-angle X-ray scattering, was approximately 150 for each surfactant, and showed no measurable chain-length dependence. The diffusion coefficients of the surfactant showed a discontinuity between the micellar and cubic phases, where the cubic phases gave very low values on the order of 10(-)(16) m(2) s(-)(1): this value indicates a non-bicontinuous cubic structure. In summary, these surfactants behave to a large extent as nonionic poly(ethylene glycol) surfactants with extended PEG headgroups.
Cabaleiro-Lago C, Nilsson M, Söderman O. Self-diffusion NMR studies of the host-guest interaction between beta-cyclodextrin and alkyltrimethylammonium bromide surfactants. Langmuir. 2005;21(25):11637–44. doi:10.1021/la0516835
Diffusion measurements by nuclear magnetic resonance (NMR) spectroscopy were used to investigate the host-guest association between beta-cyclodextrin (CD) and alkyltrimethylammonium bromide surfactants with different chain lengths, ranging from 6 up to 16 carbons. The scope and limitations of the method in the study of formation of inclusion complexes are discussed. The influences of the presence of CD in the micellization process have been studied, and the apparent critical micellar concentration and the self-diffusion coefficients of the species present in the systems have been calculated. The stoichiometries of the different complexes have been determined. Evidence for the formation of a 2:1 complex in the case of C(16)TAB has been found.
Hui KKS, Liu J, Marina O, Napadow V, Haselgrove C, Kwong KK, Kennedy DN, Makris N. The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI. Neuroimage. 2005;27(3):479–96. doi:10.1016/j.neuroimage.2005.04.037
Clinical and experimental data indicate that most acupuncture clinical results are mediated by the central nervous system, but the specific effects of acupuncture on the human brain remain unclear. Even less is known about its effects on the cerebellum. This fMRI study demonstrated that manual acupuncture at ST 36 (Stomach 36, Zusanli), a main acupoint on the leg, modulated neural activity at multiple levels of the cerebro-cerebellar and limbic systems. The pattern of hemodynamic response depended on the psychophysical response to needle manipulation. Acupuncture stimulation typically elicited a composite of sensations termed deqi that is related to clinical efficacy according to traditional Chinese medicine. The limbic and paralimbic structures of cortical and subcortical regions in the telencephalon, diencephalon, brainstem and cerebellum demonstrated a concerted attenuation of signal intensity when the subjects experienced deqi. When deqi was mixed with sharp pain, the hemodynamic response was mixed, showing a predominance of signal increases instead. Tactile stimulation as control also elicited a predominance of signal increase in a subset of these regions. The study provides preliminary evidence for an integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 that correlates with the psychophysical response.
Makris N, Caviness VS, Kennedy DN. An introduction to MR imaging-based stroke morphometry. Neuroimaging Clin N Am. 2005;15(2):325–39. doi:10.1016/j.nic.2005.06.004
The anatomic description of the stroke lesion is an essential component of clinical diagnosis and treatment and has become an established tool in investigations into underlying stroke pathophysiology. Magnetic resonance (MR) imaging permits quantitative evaluation of the distributed consequences of the pathologic stroke insult. General properties of stroke effects have emerged using these tools. This article surveys the classes of morphometric data that are available from conventional MR images, the methods for extracting quantitative results, and samples of the application of these methods to stroke. These samples highlight anatomic-based considerations regarding the nature of stroke and its repercussions within the brain parenchyma.