Publications by Year: 2002

2002

Herbert MR, Harris GJ, Adrien KT, Ziegler DA, Makris N, Kennedy DN, Lange NT, Chabris CF, Bakardjiev A, Hodgson J, et al. Abnormal asymmetry in language association cortex in autism.. Ann Neurol. 2002;52(5):588–96. doi:10.1002/ana.10349
Autism is a neurodevelopmental disorder affecting cognitive, language, and social functioning. Although language and social communication abnormalities are characteristic, prior structural imaging studies have not examined language-related cortex in autistic and control subjects. Subjects included 16 boys with autism (aged 7-11 years), with nonverbal IQ greater than 80, and 15 age- and handedness-matched controls. Magnetic resonance brain images were segmented into gray and white matter; cerebral cortex was parcellated into 48 gyral-based divisions per hemisphere. Asymmetry was assessed a priori in language-related inferior lateral frontal and posterior superior temporal regions and assessed post hoc in all regions to determine specificity of asymmetry abnormalities. Boys with autism had significant asymmetry reversal in frontal language-related cortex: 27% larger on the right in autism and 17% larger on the left in controls. Only one additional region had significant asymmetry differences on post hoc analysis: posterior temporal fusiform gyrus (more left-sided in autism), whereas adjacent fusiform gyrus and temporooccipital inferior temporal gyrus both approached significance (more right-sided in autism). These inferior temporal regions are involved in visual face processing. In boys with autism, language and social/face processing-related regions displayed abnormal asymmetry. These structural abnormalities may relate to language and social disturbances observed in autism.
Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain.. Neuron. 2002;33(3):341–55.
We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. The classification technique employs a registration procedure that is robust to anatomical variability, including the ventricular enlargement typically associated with neurological diseases and aging. The technique is shown to be comparable in accuracy to manual labeling, and of sufficient sensitivity to robustly detect changes in the volume of noncortical structures that presage the onset of probable Alzheimer’s disease.
DaSilva AFM, Becerra L, Makris N, Strassman AM, González G, Geatrakis N, Borsook D. Somatotopic activation in the human trigeminal pain pathway.. J Neurosci. 2002;22(18):8183–92.
Functional magnetic resonance imaging was used to image pain-associated activity in three levels of the neuraxis: the medullary dorsal horn, thalamus, and primary somatosensory cortex. In nine subjects, noxious thermal stimuli (46 degrees C) were applied to the facial skin at sites within the three divisions of the trigeminal nerve (V1, V2, and V3) and also to the ipsilateral thumb. Anatomical and functional data were acquired to capture activation across the spinothalamocortical pathway in each individual. Significant activation was observed in the ipsilateral spinal trigeminal nucleus within the medulla and lower pons in response to at least one of the three facial stimuli in all applicable data sets. Activation from the three facial stimulation sites exhibited a somatotopic organization along the longitudinal (rostrocaudal) axis of the brain stem that was consistent with the classically described "onion skin" pattern of sensory deficits observed in patients after trigeminal tractotomy. In the thalamus, activation was observed in the contralateral side involving the ventroposteromedial and dorsomedial nuclei after stimulation of the face and in the ventroposterolateral and dorsomedial nuclei after stimulation of the thumb. Activation in the primary somatosensory cortex displayed a laminar sequence that resembled the trigeminal nucleus, with V2 more rostral, V1 caudal, and V3 medial, abutting the region of cortical activation observed for the thumb. These results represent the first simultaneous imaging of pain-associated activation at three levels of the neuraxis in individual subjects. This approach will be useful for exploring central correlates of plasticity in models of experimental and clinical pain.
Westin C-F, Maier SE, Mamata H, Nabavi A, Jolesz FA, Kikinis R. Processing and visualization for diffusion tensor MRI.. Med Image Anal. 2002;6(2):93–108.
This paper presents processing and visualization techniques for Diffusion Tensor Magnetic Resonance Imaging (DT-MRI). In DT-MRI, each voxel is assigned a tensor that describes local water diffusion. The geometric nature of diffusion tensors enables us to quantitatively characterize the local structure in tissues such as bone, muscle, and white matter of the brain. This makes DT-MRI an interesting modality for image analysis. In this paper we present a novel analytical solution to the Stejskal-Tanner diffusion equation system whereby a dual tensor basis, derived from the diffusion sensitizing gradient configuration, eliminates the need to solve this equation for each voxel. We further describe decomposition of the diffusion tensor based on its symmetrical properties, which in turn describe the geometry of the diffusion ellipsoid. A simple anisotropy measure follows naturally from this analysis. We describe how the geometry or shape of the tensor can be visualized using a coloring scheme based on the derived shape measures. In addition, we demonstrate that human brain tensor data when filtered can effectively describe macrostructural diffusion, which is important in the assessment of fiber-tract organization. We also describe how white matter pathways can be monitored with the methods introduced in this paper. DT-MRI tractography is useful for demonstrating neural connectivity (in vivo) in healthy and diseased brain tissue.
Ruiz-Alzola J, Westin C-F, Warfield SK, Alberola C, Maier S, Kikinis R. Nonrigid registration of 3D tensor medical data.. Med Image Anal. 2002;6(2):143–61.
New medical imaging modalities offering multi-valued data, such as phase contrast MRA and diffusion tensor MRI, require general representations for the development of automated algorithms. In this paper we propose a unified framework for the registration of medical volumetric multi-valued data using local matching. The paper extends the usual concept of similarity between two pieces of data to be matched, commonly used with scalar (intensity) data, to the general tensor case. Our approach to registration is based on a multiresolution scheme, where the deformation field estimated in a coarser level is propagated to provide an initial deformation in the next finer one. In each level, local matching of areas with a high degree of local structure and subsequent interpolation are performed. Consequently, we provide an algorithm to assess the amount of structure in generic multi-valued data by means of gradient and correlation computations. The interpolation step is carried out by means of the Kriging estimator, which provides a novel framework for the interpolation of sparse vector fields in medical applications. The feasibility of the approach is illustrated by results on synthetic and clinical data.
Seidman LJ, Faraone S V, Goldstein JM, Kremen WS, Horton NJ, Makris N, Toomey R, Kennedy D, Caviness VS, Tsuang MT. Left hippocampal volume as a vulnerability indicator for schizophrenia: a magnetic resonance imaging morphometric study of nonpsychotic first-degree relatives.. Arch Gen Psychiatry. 2002;59(9):839–49.
BACKGROUND: Clues to the causes of schizophrenia can be derived from studying first-degree relatives because they are genetically related to an ill family member. Abnormalities observed in nonpsychotic relatives are indicators of possible genetic vulnerability to illness, independent of psychosis. We tested 4 hypotheses: (1) that hippocampal volume is smaller in nonpsychotic relatives than in controls, particularly in the left hemisphere; (2) that hippocampi will be smaller in multiplex relatives as compared with simplex relatives, and both will be smaller than in controls; (3) that hippocampal volumes and verbal declarative memory function will be positively correlated; and (4) that hippocampi will be smaller in patients with schizophrenia than in their nonpsychotic relatives or in controls.
Goldstein JM, Seidman LJ, O\textquoterightBrien LM, Horton NJ, Kennedy DN, Makris N, Caviness VS, Faraone S V, Tsuang MT. Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging.. Arch Gen Psychiatry. 2002;59(2):154–64.
BACKGROUND: Previous studies suggest that the impact of early insults predisposing to schizophrenia may have differential consequences by sex. We hypothesized that brain regions found to be structurally different in normal men and women (sexual dimorphisms) and abnormal in schizophrenia would show significant sex differences in brain abnormalities, particularly in the cortex, in schizophrenia. METHODS: Forty outpatients diagnosed as having schizophrenia by DSM-III-R were systematically sampled to be comparable within sex with 48 normal comparison subjects on the basis of age, ethnicity, parental socioeconomic status, and handedness. A comprehensive assessment of the entire brain was based on T1-weighted 3-dimensional images acquired from a 1.5-T magnet. Multivariate general linear models for correlated data were used to test for sex-specific effects regarding 22 hypothesized cortical, subcortical, and cerebrospinal fluid brain volumes, adjusted for age and total cerebrum size. Sex x group interactions were also tested on asymmetries of the planum temporale, Heschl’s gyrus, and superior temporal gyrus, additionally controlled for handedness. RESULTS: Normal patterns of sexual dimorphisms were disrupted in schizophrenia. Sex-specific effects were primarily evident in the cortex, particularly in the frontomedial cortex, basal forebrain, cingulate and paracingulate gyri, posterior supramarginal gyrus, and planum temporale. Normal asymmetry of the planum was also disrupted differentially in men and women with schizophrenia. There were no significant differential sex effects in subcortical gray matter regions or cerebrospinal fluid. CONCLUSION: Factors that produce normal sexual dimorphisms may be associated with modulating insults producing schizophrenia, particularly in the cortex.