Publications by Year: 2000

2000

Westin C, Richolt J, , Kikinis R. Affine adaptive filtering of CT data. Med Image Anal. 2000;4(2):161–77.
A novel method for resampling and enhancing image data using multidimensional adaptive filters is presented. The underlying issue that this paper addresses is segmentation of image structures that are close in size to the voxel geometry. Adaptive filtering is used to reduce both the effects of partial volume averaging by resampling the data to a lattice with higher sample density and to reduce the image noise level. Resampling is achieved by constructing filter sets that have subpixel offsets relative to the original sampling lattice. The filters are also frequency corrected for ansisotropic voxel dimensions. The shift and the voxel dimensions are described by an affine transform and provides a model for tuning the filter frequency functions. The method has been evaluated on CT data where the voxels are in general non cubic. The in-plane resolution in CT image volumes is often higher by a factor of 3-10 than the through-plane resolution. The method clearly shows an improvement over conventional resampling techniques such as cubic spline interpolation and sinc interpolation.
Kyriakos WE, Panych LP, Kacher DF, Westin C, Bao SM, Mulkern R V, Jolesz FA. Sensitivity Profiles from an Array of Coils for Encoding and Reconstruction in Parallel (SPACE RIP). Magn Reson Med. 2000;44(2):301–8.
A new parallel imaging technique was implemented which can result in reduced image acquisition times in MRI. MR data is acquired in parallel using an array of receiver coils and then reconstructed simultaneously with multiple processors. The method requires the initial estimation of the 2D sensitivity profile of each coil used in the receiver array. These sensitivity profiles are then used to partially encode the images of interest. A fraction of the total number of k-space lines is consequently acquired and used in a parallel reconstruction scheme, allowing for a substantial reduction in scanning and display times. This technique is in the family of parallel acquisition schemes such as simultaneous acquisition of spatial harmonics (SMASH) and sensitivity encoding (SENSE). It extends the use of the SMASH method to allow the placement of the receiver coil array around the object of interest, enabling imaging of any plane within the volume of interest. In addition, this technique permits the arbitrary choice of the set of k-space lines used in the reconstruction and lends itself to parallel reconstruction, hence allowing for real-time rendering. Simulated results with a 16-fold increase in temporal resolution are shown, as are experimental results with a 4-fold increase in temporal resolution.