Impact of nonrigid motion correction technique on pixel-wise pharmacokinetic analysis of free-breathing pulmonary dynamic contrast-enhanced MR imaging.

Tokuda J, Mamata H, Gill RR, Hata N, Kikinis R, Padera RF, Lenkinski RE, Sugarbaker DJ, Hatabu H. Impact of nonrigid motion correction technique on pixel-wise pharmacokinetic analysis of free-breathing pulmonary dynamic contrast-enhanced MR imaging. J Magn Reson Imaging. 2011;33(4):968–73.

Abstract

PURPOSE: To investigates the impact of nonrigid motion correction on pixel-wise pharmacokinetic analysis of free-breathing DCE-MRI in patients with solitary pulmonary nodules (SPNs). Misalignment of focal lesions due to respiratory motion in free-breathing dynamic contrast-enhanced MRI (DCE-MRI) precludes obtaining reliable time-intensity curves, which are crucial for pharmacokinetic analysis for tissue characterization. MATERIALS AND METHODS: Single-slice 2D DCE-MRI was obtained in 15 patients. Misalignments of SPNs were corrected using nonrigid B-spline image registration. Pixel-wise pharmacokinetic parameters K(trans) , v(e) , and k(ep) were estimated from both original and motion-corrected DCE-MRI by fitting the two-compartment pharmacokinetic model to the time-intensity curve obtained in each pixel. The "goodness-of-fit" was tested with χ(2) -test in pixel-by-pixel basis to evaluate the reliability of the parameters. The percentages of reliable pixels within the SPNs were compared between the original and motion-corrected DCE-MRI. In addition, the parameters obtained from benign and malignant SPNs were compared.
Last updated on 02/26/2023