Generalized encoding through the use of selective excitation in accelerated parallel MRI.

Kyriakos WE, Hoge S, Mitsouras D. Generalized encoding through the use of selective excitation in accelerated parallel MRI. NMR Biomed. 2006;19(3):379–92.

Abstract

Selective RF excitation is employed in magnetic resonance imaging (MRI) to achieve a variety of effects, such as slice selection. More elaborate transverse magnetization patterns can be realized via tailored RF excitation pulses, useful for example to image any specific region geometry within the field of view, or, to acquire non-Fourier encoded samples of the underlying magnetization distribution. In this manuscript, we review prior work on the combination of selective RF excitation with parallel MRI acquisition techniques. This combination can be used both to advantageously manipulate the numerical conditioning of the reconstruction problem, as well as to compact the information content of the acquired data so as to improve the achievable acceleration rate. With the latter application it is possible to also consider the acceleration provided by parallel imaging alone as a compaction of information content, which in certain cases can be used to reduce the length of the selective excitations. The main contribution of this review is to show how the combination of selective excitation with parallel imaging provides the latter an added flexibility that can be used to either enhance image quality, increase imaging speed, or both.
Last updated on 02/26/2023